Chin. Phys. Lett.  2014, Vol. 31 Issue (12): 120301    DOI: 10.1088/0256-307X/31/12/120301
GENERAL |
Eigen Spectra of the Dirac Equation for Deformed Woods–Saxon Potential via the Similarity Transformation
ALSADI Khalid S**
Department of Physics, Faculty of Science, Taibah University, Madina 41481, Saudi Arabia
Cite this article:   
ALSADI Khalid S 2014 Chin. Phys. Lett. 31 120301
Download: PDF(477KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The Dirac equation for the deformed Woods–Saxon potential is converted to a form that is nearly similar to the Schr?dinger equation by using the similarity transformation. The resulting equation is a simple one and is ready to be used directly by the asymptotic iteration method to find the solution of the problem under consideration.
Published: 12 January 2015
PACS:  03.65.-w (Quantum mechanics)  
  03.65.Fd (Algebraic methods)  
  03.65.Ge (Solutions of wave equations: bound states)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/12/120301       OR      https://cpl.iphy.ac.cn/Y2014/V31/I12/120301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ALSADI Khalid S
[1] Greiner W 1990 Relativistic Quantum Mechanics (Berlin: Springer)
[2] Levai G 1992 J. Phys. A: Math. Gen. 25 L521
[3] Gendenshtein L 1983 Zh. Eksp. Teor. Fiz. 38 299
[4] Gendenshtein L 1983 J. Exp. Theor. Phys. Lett. 38 356
[5] Ciftci H, Hall R L and Saad N 2003 J. Phys. A: Math. Gen. 36 11807
[6] Ciftci H, Hall R L and Saad N 2005 J. Phys. A: Math. Gen. 38 1147
[7] Saad N, Hall R L and Ciftci H 2006 J. Phys. A: Math. Gen. 39 13445
[8] Yasuk F, Durmus A and Boztosun I 2006 J. Math. Phys. 47 082302
[9] Falaye B J 2012 Few-Body Syst. 53 557
[10] Infeld L and Hull T E 1951 Rev. Mod. Phys. 23 21
[11] Nikiforov A F and Uvarov V B 1988 Special Functions of Mathematical Physics (New York: Academic)
[12] Fernandez F M 2004 J. Phys. A 37 6173
[13] Barakat T, Abodayeh K and Mukheimer A 2005 J. Phys. A: Math. Gen. 38 1299
[14] Sous A J 2007 Mod. Phys. Lett. A 22 1677
[15] Ciftci H, Hall R L and Saad N 2003 J. Phys. A 36 11807
[16] Ciftci H, Hall R L and Saad N 2005 Phys. Lett. A 340 388
[17] Ciftci H, Hall R L and Saad N 2005 Phys. Rev. A 72 022101
[18] Fernandez F M 2005 Phys. Lett. A 346 381
[19] Amore V and Fernandez F M 2006 J. Phys. A 39 10491
[20] Boztosun I, Karakoc M, Yasuk F and Durmus A 2006 J. Math. Phys. 47 062301
[21] Bayrak O and Boztosun I 2006 J. Phys. A 39 6955
[22] Barakat T 2009 Ann. Phys. 324 725
[23] Barakat T and Alhendi H A 2013 Found. Phys. 43 1171
[24] Barakat T 2012 Phys. Scr. 86 065005
[25] Guo J Y 2012 Phys. Rev. C 85 021302(R)
[26] Su J Y 1985 Phys. Rev. A 32 3251
[27] Woods R D and Saxon D S 1954 Phys. Rev. 95 577
[28] Guo J Y and Sheng Q 2005 Phys. Lett. A 338 90
[29] Ikhdair S M, Falaye B J and Hamzavi M 2013 Chin. Phys. Lett. 30 020305
[30] Diaz-Torres A and Scheid W 2005 Nucl. Phys. A 757 373
[31] Suhara T, Funaki Y, Zhou B, Horiuchi H and Tohsaki A 2014 Phys. Rev. Lett. 112 062501
[32] Badalov V H, Ahmadov H I and Badalov S V 2010 Int. J. Mod. Phys. E 19 1463
[33] Badalov V H, Ahmadov H I and Badalov S V 2009 Int. J. Mod. Phys. E 18 631
[34] Ikhdair S M and Sever R 2010 Central Eur. J. Phys. 8 652
[35] Aydogdu O and Sever R 2010 Eur. Phys. J. A 43 73
[36] Guo J Y, Fang X Z and Xu F X 2002 Phys. Rev. A 66 062105
[37] Moshinsky M and Szczepanika A 1989 J. Phys. A 22 L817
[38] Kukulin V I, Loyla G and Moshinsky M 1991 Phys. Lett. A 158 19
[39] Alberto P, Lisboa R, Malheiro M and De Castro A S 2005 Phys. Rev. C 71 034313
[40] Aydogdu O, Maghsoodi E and Hassanabadi H 2013 Chin. Phys. B 22 010302
Related articles from Frontiers Journals
[1] Ji-Ze Xu, Li-Na Sun, J.-F. Wei, Y.-L. Du, Ronghui Luo, Lei-Lei Yan, M. Feng, and Shi-Lei Su. Two-Qubit Geometric Gates Based on Ground-State Blockade of Rydberg Atoms[J]. Chin. Phys. Lett., 2022, 39(9): 120301
[2] Haodong Wang, Peihan Lei, Xiaoyu Mao, Xi Kong, Xiangyu Ye, Pengfei Wang, Ya Wang, Xi Qin, Jan Meijer, Hualing Zeng, Fazhan Shi, and Jiangfeng Du. Magnetic Phase Transition in Two-Dimensional CrBr$_3$ Probed by a Quantum Sensor[J]. Chin. Phys. Lett., 2022, 39(4): 120301
[3] L. Jin. Unitary Scattering Protected by Pseudo-Hermiticity[J]. Chin. Phys. Lett., 2022, 39(3): 120301
[4] X. M. Yang , L. Jin, and Z. Song. Topological Knots in Quantum Spin Systems[J]. Chin. Phys. Lett., 2021, 38(6): 120301
[5] L. Jin and Z. Song. Symmetry-Protected Scattering in Non-Hermitian Linear Systems[J]. Chin. Phys. Lett., 2021, 38(2): 120301
[6] Anqi Shi , Haoyu Guan , Jun Zhang , and Wenxian Zhang. Long-Range Interaction Enhanced Adiabatic Quantum Computers[J]. Chin. Phys. Lett., 2020, 37(12): 120301
[7] Peiran Yin, Xiaohui Luo, Liang Zhang, Shaochun Lin, Tian Tian, Rui Li, Zizhe Wang, Changkui Duan, Pu Huang, and Jiangfeng Du. Chiral State Conversion in a Levitated Micromechanical Oscillator with ${\boldsymbol In~Situ}$ Control of Parameter Loops[J]. Chin. Phys. Lett., 2020, 37(10): 120301
[8] Bo-Xing Cao  and Fu-Lin Zhang. The Analytic Eigenvalue Structure of the 1+1 Dirac Oscillator[J]. Chin. Phys. Lett., 2020, 37(9): 120301
[9] R. C. Woods. Comments on “Non-Relativistic Treatment of a Generalized Inverse Quadratic Yukawa Potential” [Chin. Phys. Lett. 34 (2017) 110301][J]. Chin. Phys. Lett., 2020, 37(8): 120301
[10] Gui-Hao Jia, Yu Xu, Xiao Kong, Cui-Xian Guo, Si-Lei Liu, Su-Peng Kou. Emergent Quantum Dynamics of Vortex-Line under Linear Local Induction Approximation[J]. Chin. Phys. Lett., 2019, 36(12): 120301
[11] Ming Zhang, Zairong Xi, Tzyh-Jong Tarn. Robust Set Stabilization and Its Instances for Open Quantum Systems[J]. Chin. Phys. Lett., 2018, 35(9): 120301
[12] Lei Du, Zhihao Xu, Chuanhao Yin, Liping Guo. Dynamical Evolution of an Effective Two-Level System with $\mathcal{PT}$ Symmetry[J]. Chin. Phys. Lett., 2018, 35(5): 120301
[13] Xin Zhao, Bo-Yang Liu, Ying Yi, Hong-Yi Dai, Ming Zhang. Impact of Distribution Fairness Degree and Entanglement Degree on Cooperation[J]. Chin. Phys. Lett., 2018, 35(3): 120301
[14] F. Safari, H. Jafari, J. Sadeghi, S. J. Johnston, D. Baleanu. Stability of Dirac Equation in Four-Dimensional Gravity[J]. Chin. Phys. Lett., 2017, 34(6): 120301
[15] Muhammad Adeel Ajaib. Hydrogen Atom and Equivalent Form of the Lévy-Leblond Equation[J]. Chin. Phys. Lett., 2017, 34(5): 120301
Viewed
Full text


Abstract