Chin. Phys. Lett.  2014, Vol. 31 Issue (11): 118401    DOI: 10.1088/0256-307X/31/11/118401
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Method of Moments Based on Prior Knowledge for Solving Wide Angle EM Scattering Problems
CAO Xin-Yuan1, CHEN Ming-Sheng1**, KONG Meng1,2, ZHANG Liang1, WU Xian-Liang1
1School of Electronics and Information Engineering, Hefei Normal University, Hefei 230601
2School of Electronics and Information Engineering, Anhui University, Hefei 230039
Cite this article:   
CAO Xin-Yuan, CHEN Ming-Sheng, KONG Meng et al  2014 Chin. Phys. Lett. 31 118401
Download: PDF(567KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Aiming at fast analysis of wide angle electromagnetic scattering problems, compressed sensing theory is introduced and applied, and a new kind of sparse representation of induced currents is constructed based on prior knowledge that originates from excitation vectors in method of moments. Using the new kind of sparse representation in conjugation with compressed sensing, one can recover unknown currents accurately with fewer measurements than some conventional sparse representations in mathematical sense. Hence, times of calculation by traditional method of moments used to obtain the required measurements can be reduced, which will improve the computational efficiency.
Published: 28 November 2014
PACS:  84.40.-x (Radiowave and microwave (including millimeter wave) technology)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/11/118401       OR      https://cpl.iphy.ac.cn/Y2014/V31/I11/118401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CAO Xin-Yuan
CHEN Ming-Sheng
KONG Meng
ZHANG Liang
WU Xian-Liang
[1] Christopoulos C 2011 IET 8th International Conference on Computation in Electromagnetics (CEM 2011) 1 85
[2] Song J M, Lu C C and Chew W C 1997 IEEE Trans. Antennas Propag. 45 1488
[3] Li J, Guo L X, He Q and Wei B 2011 Chin. Phys. Lett. 28 104101
[4] Cao X Y, Chen M S and Wu X L 2013 J. Syst. Eng. Electron. 35 1143
[5] Chen M S, Liu F L, Du H M and Wu X L 2011 IEEE Antennas Wireless Propag. Lett. 10 1243
[6] Du H M, Chen M S, Wu X L and Cao X Y 2012 Chin. J. Comput. Propag. 29 394
[7] Baraniuk R 2008 42nd Annual Conference on Information Sciences and Systems (CISS 2008) 1 iv
[8] Cao X Y, Chen M S and Wu X L 2013 Chin. Phys. Lett. 30 028401
[9] Cao X Y, Chen M S, Wu X L and Shen J 2013 Acta Electron. Sin. 41 2361
[10] Li E S 2003 IEEE Trans. Antennas Propag. 51 2862
[11] Yla-oijala P and Taskinen M 2003 IEEE Trans. Antennas Propag. 51 1837
[12] Savov S V 2003 IEEE Trans. Antennas Propag. 51 3298
[13] Kantabutra V 1996 IEEE Trans. Comput. 45 328
[14] Mamedov B A 2012 Chin. Phys. B 21 055204
[15] Candes E J, Romberg J and Tao T 2006 IEEE Trans. Inf. Theory 52 489
[16] Needell D and Vershynin R 2010 IEEE J. Sel. Top. Signal Process. 4 310
[17] Bouchard P J, Budden P J and Withers P J 2012 Eng. Fract. Mech. 91 37
Related articles from Frontiers Journals
[1] Xiao-Yu Liu, Yong Zhang, De-Jiao Xia, Tian-Hao Ren, Jing-Tao Zhou, Dong Guo, Zhi Jin. A High-Sensitivity Terahertz Detector Based on a Low-Barrier Schottky Diode[J]. Chin. Phys. Lett., 2017, 34(7): 118401
[2] Tian-Hao Ren, Yong Zhang, Bo Yan, Rui-Min Xu, Cheng-Yue Yang, Jing-Tao Zhou, Zhi Jin. A High Performance Terahertz Waveguide Detector Based on a Low-Barrier Diode[J]. Chin. Phys. Lett., 2016, 33(06): 118401
[3] Meng Kong, Ming-Sheng Chen, Liang Zhang, Xin-Yuan Cao, Xian-Liang Wu. Efficient Solution to Electromagnetic Scattering Problems of Bodies of Revolution by Compressive Sensing[J]. Chin. Phys. Lett., 2016, 33(01): 118401
[4] REN Tian-Hao, ZHANG Yong, YAN Bo, XU Rui-Min, YANG Cheng-Yue, ZHOU Jing-Tao, JIN Zhi. A 330–500 GHz Zero-Biased Broadband Tripler Based on Terahertz Monolithic Integrated Circuits[J]. Chin. Phys. Lett., 2015, 32(02): 118401
[5] WANG Qi, ZHU Xiao-Feng, YUAN Xiao-Wen, CHEN Chang-Qing, LUO Xiang-Dong, ZHANG Bo. Sub-Wavelength Near-Field Metal Detection using an On-Chip Spintronic Technique[J]. Chin. Phys. Lett., 2013, 30(12): 118401
[6] LI Ru-Guan, JIANG Shu-Wen, GAO Li-Bin, LI Yan-Rong. A Distributed Phase Shifter Using Bi1.5Zn1.0Nb1.5O7/Ba0.5Sr0.5TiO3 Thin Films[J]. Chin. Phys. Lett., 2013, 30(7): 118401
[7] GAO Xiang, LI Chao, FANG Guang-You . The Realization of Terahertz Image Reconstruction with High Resolution Based on the Amplitude of the Echoed Wave by using the Phase Retrieval Algorithm[J]. Chin. Phys. Lett., 2013, 30(6): 118401
[8] XING Qing-Zi, DU Lei, ZHENG Shu-Xin, GUAN Xia-Ling, LI Jian, CAI Jin-Chi, GONG Cun-Kui, WANG Xue-Wu, TANG Chuan-Xiang, James Billen, James Stovall, Lloyd Young. Tuning and Cold Test of a Four-Vane RFQ with Ramped Inter-Vane Voltage for the Compact Pulsed Hadron Source[J]. Chin. Phys. Lett., 2013, 30(5): 118401
[9] CAO Xin-Yuan, CHEN Ming-Sheng, WU Xian-Liang. Sparse Transform Matrices and Their Application in the Calculation of Electromagnetic Scattering Problems[J]. Chin. Phys. Lett., 2013, 30(2): 118401
[10] ZHANG Jun-Feng, LI De-Ren, CHEN Zheng, LU Zhi-Chao, ZHOU Shao-Xiong. Noise Suppression Effect of Composites Containing Glass-Covered Amorphous CoFeSiBCr Wires[J]. Chin. Phys. Lett., 2012, 29(6): 118401
[11] YAO Bin, ZHENG Qin-Hong, **, PENG Jin-Hui, ZHONG Ru-Neng, XIANG Tai, XU Wan-Song . Partially Loaded Cavity Analysis by Using the 2-D FDTD Method[J]. Chin. Phys. Lett., 2011, 28(11): 118401
[12] LIU Zong-Kai, ZHOU Ben-Mou**, LIU Hui-Xing, LIU Zhi-Gang, JI Yan-Liang . Direct Force Control of a Rudder with the Action of a Coplanar Waveguide Product Microwave[J]. Chin. Phys. Lett., 2011, 28(9): 118401
[13] ZHANG Yu, ZHANG Xin-Liang, CHEN Guo-Jie, XU En-Ming, HUANG De-Xiu. A Microwave Photonic Notch Filter Using a Microfiber Ring Resonator[J]. Chin. Phys. Lett., 2010, 27(7): 118401
[14] XU Wei, XIN Xiang-Jun, ZHAO Tong-Gang, LING Jing, YU Chong-Xiu. Generation of Carrier and Odd Sidebands Suppressed Optical MM-Wave with Signal Only on One Sideband Using an External Integrated Mach-Zehnder Modulator[J]. Chin. Phys. Lett., 2009, 26(12): 118401
[15] WEN Fu-Sheng, QIAO Liang, YI Hai-Bo, ZHOU Dong, LI Fa-Shen. Calculation of High Frequency Complex Permeability of Carbonyl Iron Flakes in a Nomagnetic Matrix[J]. Chin. Phys. Lett., 2008, 25(2): 118401
Viewed
Full text


Abstract