CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Polarization Induced High Al Composition AlGaN p–n Junction Grown on Silicon Substrates |
ZHANG Peng1, LI Shi-Bin1**, YU Hong-Ping1, WU Zhi-Ming1, CHEN Zhi1,2, JIANG Ya-Dong1 |
1State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054 2Department of Electrical & Computer Engineering, University of Kentucky, Lexington, KY 40506, USA
|
|
Cite this article: |
ZHANG Peng, LI Shi-Bin, YU Hong-Ping et al 2014 Chin. Phys. Lett. 31 118102 |
|
|
Abstract Wide bandgap AlGaN (x=0.7–1) p-n junction is realized on a silicon substrate through polarization induced doping. Polarization induced positive charge field is produced by linearly grading from AlN to Al0.7Ga0.3N, and negative charge field is generated by an inverted grading from Al0.7Ga0.3N to AlN. The polarization charge field induced hole density is on the order of 1018 cm?3 in the graded AlxGa1?xN:Be (x=0.7–1) p-n junction. Polarization doping provides a feasible way to mass produce III-nitride devices on silicon substrates.
|
|
Published: 28 November 2014
|
|
PACS: |
81.15.-z
|
(Methods of deposition of films and coatings; film growth and epitaxy)
|
|
73.50.-h
|
(Electronic transport phenomena in thin films)
|
|
73.61.Ey
|
(III-V semiconductors)
|
|
|
|
|
[1] Zhang M, Bhattacharya P, Guo W and Banerjee A 2010 Appl. Phys. Lett. 96 132103 [2] Meneghini M, Bertin M, Stocco A, Santo G D, Marcon D, Malinowski P E, Chini A and Meneghesso G 2013 Appl. Phys. Lett. 102 163501 [3] Mimila-Arroyo J, Jomard F and Chevallier J 2013 Appl. Phys. Lett. 102 092104 [4] Sangaré P, Ducournau G, Grimbert B, Brandli V, Faucher M, Gaquière C, í?iguez-de-la-Torre A, í?iguez-de-la-Torre I, Millithaler J F, Mateos J and González T 2013 J. Appl. Phys. 113 034305 [5] Li S, Zhang T, Wu J, Yang Y and Wang Z 2013 Appl. Phys. Lett. 102 062108 [6] Shin J H, Park J, Jang S, Jang T and Kim K S 2013 Appl. Phys. Lett. 102 243505 [7] Choi S, Heller E, Dorsey D, Vetury R and Graham S 2013 J. Appl. Phys. 114 164501 [8] Cho C Y, Zhang Y, Cicek E, Rahnema B, Bai Y, McClintock R and Razeghi M 2013 Appl. Phys. Lett. 102 211110 [9] Carnevale S D, Kent T F, Phillips P J, Mills M J, Rajan S and Myers R C 2012 Nano Lett. 12 915 [10] Kozodoy P, Hansen M, DenBaars S P and Mishra U K 1999 Appl. Phys. Lett. 74 3681 [11] Simon J, Protasendko V, Lian C X, Xing H L and Jena D 2010 Science 327 60 [12] Northrup J E 2001 Appl. Phys. Lett. 78 2855 [13] Camevale S D, Kent T F, Phillips P J, Sarwar A T M G, Selcu C, Klie R F and Myers R C 2013 Nano Lett. 13 3029 [14] Li S, Ware M, Wu J, Minor P and Wang Z 2012 Appl. Phys. Lett. 101 122103 [15] Gregory Snider One-Dimensional Poisson–Schr?dinger Solver Program (Paris: University of Notre Dame) http://www.nd.edu/ gsnider/ [16] Akazawa M, Gao B, Hashizume T, Hiroki M, Yamahata S and Shigekawa N 2011 Appl. Phys. Lett. 98 142117 [17] Waldron E L, Graff J W and Schubert E F 2001 Appl. Phys. Lett. 79 2737 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|