Chin. Phys. Lett.  2014, Vol. 31 Issue (11): 114203    DOI: 10.1088/0256-307X/31/11/114203
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Quantum Correlation without Entanglement in a Two-Atom-Vacuum Field System
ZENG Ke1,2, FANG Mao-Fa1**
1Key Laboratory of Low Dimensional Quantum Structures and Quantum Control (Ministry of Education), Department of Physics, Hunan Normal University, Changsha 410081
2Department of Electronic and Communication Engineering, Changsha University, Changsha 410003
Cite this article:   
ZENG Ke, FANG Mao-Fa 2014 Chin. Phys. Lett. 31 114203
Download: PDF(536KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Quantum correlation without entanglement in a two-atom-vacuum field system is investigated. The influence of the atomic dipole-dipole interaction on quantum correlation is also examined. We find that, when both atoms are initially in separable excited states, the quantum discord of two atoms appears while their entanglement wholly vanishes throughout the evolution. We explain our results in detail. Our results provide a novel method of achieving a quantum correlation resource without entanglement in the real system.
Published: 28 November 2014
PACS:  42.50.Dv (Quantum state engineering and measurements)  
  03.65.Ud (Entanglement and quantum nonlocality)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/11/114203       OR      https://cpl.iphy.ac.cn/Y2014/V31/I11/114203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZENG Ke
FANG Mao-Fa
[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) chap 12
[2] Horodecki R, Horodecki P, Horodecki M and Horodecki K 2009 Rev. Mod. Phys. 81 865
[3] Yu T and Eberly J H 2004 Phys. Rev. Lett. 93 140404
[4] Wooters W K 1998 Phys. Rev. Lett. 80 2245
[5] López C E et al 2008 Phys. Rev. Lett. 101 080503
[6] Mazzola L et al 2009 Phys. Rev. A 79 042302
[7] Liu S P, Li J H, Yu R and Wu Y 2013 Opt. Express 21 3501
[8] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[9] Henderson L and Vedral V 2001 J. Phys. A 34 6899
[10] Zhou T, Long G L, Fu S S and Luo S L 2013 Physics 42 544 (in Chinese)
[11] Datta A, Shaji A and Caves C M 2008 Phys. Rev. Lett. 100 050502
[12] Lanyon B P, Barbieri M, Almeida M P and White A G 2008 Phys. Rev. Lett. 101 200501
[13] Werlang T, Souza S, Fanchini F F and Boas C J V 2009 Phys. Rev. A 80 024103
[14] Fanchini F F, Werlang T, Brasil C A, Arruda L G E and Caldeira A O 2010 Phys. Rev. A 81 052107
[15] Hu M L and Fan H 2012 Ann. Phys. 327 851
[16] Datta A, Flammia S T and Caves C M 2005 Phys. Rev. A 72 042316
[17] Datta A and Vidal G 2007 Phys. Rev. A 75 042310
[18] Zeng K and Fang M F 2014 Int. J. Theor. Phys. 53 (accepted)
[19] Peng J S and Li G X 1996 Introduction of Modern Quantum Optics (Beijing: Science Press) p 410
[20] Sukumar C V and Buck B 1981 Phys. Lett. A 83 211
[21] Cavers C M and Schumaker B L 1985 Phys. Rev. A 31 3068
[22] Groisman B, Popescu S and Winter A 2005 Phys. Rev. A 72 032317
[23] Dakic B, Vedral V and Brukner C 2010 Phys. Rev. Lett. 105 190502
Related articles from Frontiers Journals
[1] Qiuxin Zhang, Chenhao Zhu, Yuxin Wang, Liangyu Ding, Tingting Shi, Xiang Zhang, Shuaining Zhang, and Wei Zhang. Experimental Test of Contextuality Based on State Discrimination with a Single Qubit[J]. Chin. Phys. Lett., 2022, 39(8): 114203
[2] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 114203
[3] Shaowei Li, Daojin Fan, Ming Gong, Yangsen Ye, Xiawei Chen, Yulin Wu, Huijie Guan, Hui Deng, Hao Rong, He-Liang Huang, Chen Zha, Kai Yan, Shaojun Guo, Haoran Qian, Haibin Zhang, Fusheng Chen, Qingling Zhu, Youwei Zhao, Shiyu Wang, Chong Ying, Sirui Cao, Jiale Yu, Futian Liang, Yu Xu, Jin Lin, Cheng Guo, Lihua Sun, Na Li, Lianchen Han, Cheng-Zhi Peng, Xiaobo Zhu, and Jian-Wei Pan. Realization of Fast All-Microwave Controlled-Z Gates with a Tunable Coupler[J]. Chin. Phys. Lett., 2022, 39(3): 114203
[4] Ao-Lin Guo , Tao Tu, Le-Tian Zhu , and Chuan-Feng Li. High-Fidelity Geometric Gates with Single Ions Doped in Crystals[J]. Chin. Phys. Lett., 2021, 38(9): 114203
[5] Shaoxing Liu, Xuanying Lai, Ce Yang, and J. F. Chen. Towards High-Dimensional Entanglement in Path: Photon-Source Produced from a Two-Dimensional Atomic Cloud[J]. Chin. Phys. Lett., 2021, 38(8): 114203
[6] Bo Gong , Tao Tu, Ao-Lin Guo , Le-Tian Zhu , and Chuan-Feng Li. A Noise-Robust Pulse for Excitation Transfer in a Multi-Mode Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(4): 114203
[7] Hongbin Liang, Jiancheng Pei, and Xiaoguang Wang. Enhancing Phase Sensitivity in Mach–Zehnder Interferometers for Arbitrary Input States[J]. Chin. Phys. Lett., 2020, 37(7): 114203
[8] Hao Cao, Wenping Ma, Ge Liu, Liangdong Lü, Zheng-Yuan Xue. Quantum Secure Multiparty Computation with Symmetric Boolean Functions[J]. Chin. Phys. Lett., 2020, 37(5): 114203
[9] Kun-Peng Wang, Jun Zhuang, Xiao-Dong He, Rui-Jun Guo, Cheng Sheng, Peng Xu, Min Liu, Jin Wang, Ming-Sheng Zhan. High-Fidelity Manipulation of the Quantized Motion of a Single Atom via Stern–Gerlach Splitting[J]. Chin. Phys. Lett., 2020, 37(4): 114203
[10] Xiao-Yu Zhao, Jun-Hui Huang, Zhi-Yao Zhuo, Yong-Zhou Xue, Kun Ding, Xiu-Ming Dou, Jian Liu, Bao-Quan Sun. Optical Properties of Atomic Defects in Hexagonal Boron Nitride Flakes under High Pressure[J]. Chin. Phys. Lett., 2020, 37(4): 114203
[11] Xing-Yu Zhu, Tao Tu, Ao-Lin Guo, Zong-Quan Zhou, Guang-Can Guo. Measurement of Spin Singlet-Triplet Qubit in Quantum Dots Using Superconducting Resonator[J]. Chin. Phys. Lett., 2020, 37(2): 114203
[12] Shuang-Shuang Fu, Shun-Long Luo. Quantifying Process Nonclassicality in Bosonic Fields[J]. Chin. Phys. Lett., 2019, 36(10): 114203
[13] Sheng-Li Zhang, Song Yang. Methods for Derivation of Density Matrix of Arbitrary Multi-Mode Gaussian States from Its Phase Space Representation[J]. Chin. Phys. Lett., 2019, 36(9): 114203
[14] Yao Chen, Fo-Liang Lin, Xi Liang, Nian-Quan Jiang. Programmable Quantum Processor with Quantum Dot Qubits[J]. Chin. Phys. Lett., 2019, 36(7): 114203
[15] Rui Liu, Ling-Jun Kong, Zhou-Xiang Wang, Yu Si, Wen-Rong Qi, Shuang-Yin Huang, Chenghou Tu, Yongnan Li, Hui-Tian Wang. Two-Photon Interference Constructed by Two Hong–Ou–Mandel Effects in One Mach-Zehnder Interferometer[J]. Chin. Phys. Lett., 2018, 35(9): 114203
Viewed
Full text


Abstract