Chin. Phys. Lett.  2014, Vol. 31 Issue (11): 110502    DOI: 10.1088/0256-307X/31/11/110502
GENERAL |
Pfaffian-Type Soliton Solution to a Multi-Component Coupled Ito Equation
CHEN Jun-Chao1,2, CHEN Yong1, FENG Bao-Feng2, ZHU Han-Min3
1Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai 200062
2Department of Mathematics, The University of Texas-Pan American, Edinburg TX 78541, USA
3Suzhou Institute of Trade and Commerce, Suzhou 215000
Cite this article:   
CHEN Jun-Chao, CHEN Yong, FENG Bao-Feng et al  2014 Chin. Phys. Lett. 31 110502
Download: PDF(421KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Multi-soliton solution to a multi-component coupled Ito system is investigated based on the Hirota bilinear method. By virtue of the perturbation method, we firstly derive one- and two-soliton solutions for the coupled Ito system possessing four components. Then the multi-soliton solution for the multi-component coupled Ito system is summarized into a general form expressed by pfaffians. Finally, this general pfaffian-type soliton solution is proved by pfaffian techniques.
Published: 28 November 2014
PACS:  05.45.Yv (Solitons)  
  02.30.Jr (Partial differential equations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/11/110502       OR      https://cpl.iphy.ac.cn/Y2014/V31/I11/110502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Jun-Chao
CHEN Yong
FENG Bao-Feng
ZHU Han-Min
[1] Ito M 1980 J. Phys. Soc. Jpn. 49 771
[2] Hirota R 2004 The Direct Method in Soliton Theory (Cambridge: Cambridge University Press)
[3] Tam H W, Hu X B and Wang D L 1999 J. Phys. Soc. Jpn. 68 369
[4] Tam H W, Ma W X, Hu X B and Wang D L 2000 J. Phys. Soc. Jpn. 69 45
[5] Karasu-Kalkanli A, Karasu A and Sakovich S Y 2001 J. Phys. Soc. Jpn. 70 1165
[6] Balakhnev M J 2011 J. Phys. Soc. Jpn. 80 045002
[7] Iwao M and Hirota R 1997 J. Phys. Soc. Jpn. 66 577
[8] Iwao M and Hirota R 2000 J. Phys. Soc. Jpn. 69 59
[9] Hirota R, Hu X B and Tang X Y 2003 J. Math. Anal. Appl. 288 326
[10] Vinet L and Yu G F 2013 J. Phys. A: Math. Theor. 46 175205
[11] Yu G F 2014 J. Phys. Soc. Jpn. 83 074003
[12] Zhao H Q 2013 Appl. Math. Lett. 26 681
[13] Chen J C, Chen Y, Feng B F and Zhu H M 2014 Appl. Math. Lett. 37 15
[14] Yoneyama T 1984 Prog. Theor. Phys. 72 1081
[15] Hirota R and Ohta Y 1991 J. Phys. Soc. Jpn. 60 798
[16] Yu G F and Tam H W 2008 J. Math. Anal. Appl. 344 593
Related articles from Frontiers Journals
[1] S. Y. Lou, Man Jia, and Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 110502
[2] Shubin Wang, Guoli Ma, Xin Zhang, and Daiyin Zhu. Dynamic Behavior of Optical Soliton Interactions in Optical Communication Systems[J]. Chin. Phys. Lett., 2022, 39(11): 110502
[3] Wen-Xiu Ma. Matrix Integrable Fourth-Order Nonlinear Schr?dinger Equations and Their Exact Soliton Solutions[J]. Chin. Phys. Lett., 2022, 39(10): 110502
[4] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 110502
[5] Qin Zhou, Yu Zhong, Houria Triki, Yunzhou Sun, Siliu Xu, Wenjun Liu, and Anjan Biswas. Chirped Bright and Kink Solitons in Nonlinear Optical Fibers with Weak Nonlocality and Cubic-Quantic-Septic Nonlinearity[J]. Chin. Phys. Lett., 2022, 39(4): 110502
[6] Yuan Zhao, Yun-Bin Lei, Yu-Xi Xu, Si-Liu Xu, Houria Triki, Anjan Biswas, and Qin Zhou. Vector Spatiotemporal Solitons and Their Memory Features in Cold Rydberg Gases[J]. Chin. Phys. Lett., 2022, 39(3): 110502
[7] Yiling Zhang, Chunyu Jia, and Zhaoxin Liang. Dynamics of Two Dark Solitons in a Polariton Condensate[J]. Chin. Phys. Lett., 2022, 39(2): 110502
[8] Qin Zhou. Influence of Parameters of Optical Fibers on Optical Soliton Interactions[J]. Chin. Phys. Lett., 2022, 39(1): 110502
[9] Xiao-Man Zhang, Yan-Hong Qin, Li-Ming Ling, and Li-Chen Zhao. Inelastic Interaction of Double-Valley Dark Solitons for the Hirota Equation[J]. Chin. Phys. Lett., 2021, 38(9): 110502
[10] Qi-Hao Cao  and Chao-Qing Dai. Symmetric and Anti-Symmetric Solitons of the Fractional Second- and Third-Order Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2021, 38(9): 110502
[11] Yuan-Yuan Yan  and Wen-Jun Liu. Soliton Rectangular Pulses and Bound States in a Dissipative System Modeled by the Variable-Coefficients Complex Cubic-Quintic Ginzburg–Landau Equation[J]. Chin. Phys. Lett., 2021, 38(9): 110502
[12] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 110502
[13] Zequn Qi , Zhao Zhang , and Biao Li. Space-Curved Resonant Line Solitons in a Generalized $(2+1)$-Dimensional Fifth-Order KdV System[J]. Chin. Phys. Lett., 2021, 38(6): 110502
[14] Wei Wang, Ruoxia Yao, and Senyue Lou. Abundant Traveling Wave Structures of (1+1)-Dimensional Sawada–Kotera Equation: Few Cycle Solitons and Soliton Molecules[J]. Chin. Phys. Lett., 2020, 37(10): 110502
[15] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 110502
Viewed
Full text


Abstract