GENERAL |
|
|
|
|
Dynamic Multiscale Model for Dielectric Anomaly in PbTiO3-CoFe2O4 Epitaxial Nanocomposite Film |
HU Chuan-Sheng1, SUN Xia2, LUO Zhen-Lin1**, GAO Chen1,3** |
1National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029 2Department of Physics, University of Science and Technology of China, Hefei 230026 3CAS Key Laboratory of Materials for Energy Conversion and Collaborative Innovation Center of Chemistry for Energy Materials, University of Science and Technology of China, Hefei 230026
|
|
Cite this article: |
HU Chuan-Sheng, SUN Xia, LUO Zhen-Lin et al 2014 Chin. Phys. Lett. 31 110501 |
|
|
Abstract Theoretical calculations based on a multiscale model are proposed to interpret the dielectric anomalous enhancement observed around x=0.2 in the (PbTiO3)1?x-(CoFe2O4)x (0≤x≤1) epitaxial nanocomposite spread film. First principles calculation combined with thermodynamics statistics reveals that the dynamic ratio between different PbTiO3 phases under an external electric field is responsible for the dielectric anomaly. To verify this model with direct microstructure evidence, high resolution and high accuracy synchrotron radiation x-ray diffraction of (PbTiO3)0.8-(CoFe2O4)0.2 epitaxial composite film under an in situ electric field is collected, in which an obvious modulation of the phase balance of PbTiO3 is observed.
|
|
Published: 28 November 2014
|
|
PACS: |
05.70.Ce
|
(Thermodynamic functions and equations of state)
|
|
02.70.Rr
|
(General statistical methods)
|
|
77.80.bg
|
(Compositional effects)
|
|
|
|
|
[1] Jaffe B, Cook W J and Jaffe H 1971 Piezoelectric Ceramics (London: Academic Press) [2] Jaffe B, Roth R S and Marzullo S 1954 J. Appl. Phys. 25 809 [3] Cao W W and Cross L E 1993 Phys. Rev. B 47 4825 [4] Guo R, Cross L E, Park S E, Noheda B, Cox D E and Shirane G 2000 Phys. Rev. Lett. 84 5423 [5] Singh A K, Mishra S K, Ragini, Pandey D, Yoon S, Baik S and Shin N 2008 Appl. Phys. Lett. 92 022910 [6] Haun M J, Furman E, Halemane T R and Cross L E 1989 Ferroelectrics 99 55 [7] Fu H and Cohen R E 2000 Nature 403 281 [8] Bellaiche L, García A and Vanderbilt D 2000 Phys. Rev. Lett. 84 5427 [9] Wu Z G and Krakauer H 2003 Phys. Rev. B 68 014112 [10] Noheda B, Cox D E, Shirane G, Gonzalo J A, Cross L E and Park S E 1999 Appl. Phys. Lett. 74 2059 [11] Noheda B, Cox D E, Shirane G, Gao J and Ye Z G 2002 Phys. Rev. B 66 054104 [12] Ahart M, Somayazulu M, Cohen R E, Ganesh P, Dera P, Mao H K, Hemley R J, Ren Y, Liermann P and Wu Z G 2008 Nature 451 545 [13] Wu Z G and Cohen R E 2005 Phys. Rev. Lett. 95 037601 [14] Liu S Y, Shao Q S, Yu D S, Lü Y K, Li D J, Li Y and Cao M S 2013 Chin. Phys. B 22 017702 [15] Zeches R J, Rossell M D, Zhang J X, Hatt A J, He Q, Yang C H, Kumar A, Wang C H, Melville A, Adamo C, Sheng G, Chu Y H, Ihlefeld J F, Erni R, Ederer C, Gopalan V, Chen L Q, Schlom D G, Spaldin N A, Martin L W and Ramesh R 2009 Science 326 977 [16] Murakami M, Chang K S, Aronova M A, Lin C L, Yu M H, Simpers J H, Wuttig M, Takeuchi I, Gao C, Hu B, Lofland S E, Knauss L A and Bendersky L A 2005 Appl. Phys. Lett. 87 112901 [17] Gao C, Hu B, Li X F, Liu C H, Murakami M, Chang K S, Long C J, Wuttig M and Takeuchi I 2005 Appl. Phys. Lett. 87 153505 [18] Hu C S, Luo Z L, Sun X, Pan G Q, He Q, Wen W, Zhou X T, Takeuchi I and Gao C 2014 Chin. Phys. Lett. 31 017701 [19] Lines M E and Glass A M 1977 Principles and Applications of Ferroelectrics and Related Materials (Oxford: Clarendon Press) [20] Li J H, Levin I, Slutsker J, Provenzano V, Schenck P K, Ramesh R, Ouyang J and Roytburd A L 2005 Appl. Phys. Lett. 87 072909 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|