GENERAL |
|
|
|
|
Fermionic One-Way Quantum Computation |
CAO Xin1,2, SHANG Yun1,2** |
1Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190
2National Center for Mathematics and Interdisciplinary Sciences, Chinese Academy of Sciences, Beijing 100190 |
|
Cite this article: |
CAO Xin, SHANG Yun 2014 Chin. Phys. Lett. 31 110302 |
|
|
Abstract Fermions, as another major class of quantum particles, could be taken as carriers for quantum information processing beyond spins or bosons. In this work, we consider the fermionic generalization of the one-way quantum computation model and find that one-way quantum computation can also be simulated with fermions. In detail, using the n→2n encoding scheme from a spin system to a fermion system, we introduce the fermionic cluster state, then the universal computing power with a fermionic cluster state is demonstrated explicitly. Furthermore, we show that the fermionic cluster state can be created only by measurements on at most four modes with |+>f (fermionic Bell state) being free.
|
|
Published: 28 November 2014
|
|
PACS: |
03.67.Hk
|
(Quantum communication)
|
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
03.67.Ac
|
(Quantum algorithms, protocols, and simulations)
|
|
|
|
|
[1] Raussendorf R 2003 Ph. D. Dissertation (Munich: Ludwig Maximilians University)
[2] Raussendorf R and Briegel H J 2001 Phys. Rev. Lett. 86 5188
[3] Raussendorf R and Briegel H J 2002 Quantum Inf. Comput. 2 443
[4] Raussendorf R, Browne D E and Briegel H J 2003 Phys. Rev. A 68 022312
[5] Kwek L C, Wei Z and Zeng B 2012 Int. J. Mod. Phys. B 26 1230002
[6] Brennen G K and Miyake A 2008 Phys. Rev. Lett. 101 010502
[7] Cai J, Miyake A, Dür W and Briegel H J 2010 Phys. Rev. A 82 052309
[8] Akimasa and Miyake 2011 Ann. Phys. 326 1656
[9] Chen X, Zeng B, Gu Z C, Yoshida B and Chuang I L 2009 Phys. Rev. Lett. 102 220501
[10] Wei T C, Affleck I and Raussendorf R 2011 Phys. Rev. Lett. 106 070501
[11] Liu J et al 2014 Chin. Phys. B 23 020213
[12] Sun X M, Zha X W and Qi J X 2013 Acta Phys. Sin. 62 230302 (in Chinese)
[13] Diao D S 2013 Chin. Phys. Lett. 30 010303
[14] Bloch I 2008 Nature 453 1016
[15] Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C and O'Brien J L 2010 Nature 464 45
[16] Tokunaga Y, Kuwashiro S, Yamamoto T, Koashi M and Imoto N 2008 Phys. Rev. Lett. 100 210501
[17] Lanyon B P, Jurcevic P, Zwerger M, Hempel C, Martinez E A, Dür W, Briegel H J, Blatt R and Roos C F 2013 Phys. Rev. Lett. 111 210501
[18] Chiu Y J, Chen X and Chuang I L 2013 Phys. Rev. A 87 012305
[19] Bravyi S B and Kitaev A Y 2002 Ann. Phys. 298 210
[20] Kraus C V, Schuch N, Verstraete F and Cirac J I 2010 Phys. Rev. A 81 052338
[21] Gu Z C, Verstraete F and Wen X G 2010 arXiv:1004.2563
[22] Gross D and Eisert J 2007 Phys. Rev. Lett. 98 220503
[23] Gross D, Eisert J, Schuch N and Perez-Garcia D 2007 Phys. Rev. A 76 052315
[24] Gross D 2008 Ph. D. Dissertation (London: Imperial College London)
[25] Van den Nest M, Miyake A, Dür W and Briegel H J 2006 Phys. Rev. Lett. 97 150504
[26] Van den Nest M, Dür W, Vidal G and Briegel H J 2007 Phys. Rev. A 75 012337
[27] Zhou X, Leung D W and Chuang I L 2000 Phys. Rev. A 62 052316
[28] Feder D L 2012 Phys. Rev. A 85 012312
[29] Nielsen M A 2006 Rep. Math. Phys. 57 147
[30] Raussendorf R and Wei T C 2012 Annu. Rev. Condens. Matter Phys. 3 239
[31] Perdrix S 2005 Int. J. Quantum Inf. 3 219
[32] Perdrix S 2007 New J. Phys. 9 206
[33] Jorrand Ph and Perdrix S 2005 Quantum Informatics Proc. SPIE 5833 44 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|