Chin. Phys. Lett.  2014, Vol. 31 Issue (11): 110302    DOI: 10.1088/0256-307X/31/11/110302
GENERAL |
Fermionic One-Way Quantum Computation
CAO Xin1,2, SHANG Yun1,2**
1Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190
2National Center for Mathematics and Interdisciplinary Sciences, Chinese Academy of Sciences, Beijing 100190
Cite this article:   
CAO Xin, SHANG Yun 2014 Chin. Phys. Lett. 31 110302
Download: PDF(495KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Fermions, as another major class of quantum particles, could be taken as carriers for quantum information processing beyond spins or bosons. In this work, we consider the fermionic generalization of the one-way quantum computation model and find that one-way quantum computation can also be simulated with fermions. In detail, using the n→2n encoding scheme from a spin system to a fermion system, we introduce the fermionic cluster state, then the universal computing power with a fermionic cluster state is demonstrated explicitly. Furthermore, we show that the fermionic cluster state can be created only by measurements on at most four modes with |+>f (fermionic Bell state) being free.

Published: 28 November 2014
PACS:  03.67.Hk (Quantum communication)  
  03.67.Lx (Quantum computation architectures and implementations)  
  03.67.Ac (Quantum algorithms, protocols, and simulations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/11/110302       OR      https://cpl.iphy.ac.cn/Y2014/V31/I11/110302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CAO Xin
SHANG Yun

[1] Raussendorf R 2003 Ph. D. Dissertation (Munich: Ludwig Maximilians University)
[2] Raussendorf R and Briegel H J 2001 Phys. Rev. Lett. 86 5188
[3] Raussendorf R and Briegel H J 2002 Quantum Inf. Comput. 2 443
[4] Raussendorf R, Browne D E and Briegel H J 2003 Phys. Rev. A 68 022312
[5] Kwek L C, Wei Z and Zeng B 2012 Int. J. Mod. Phys. B 26 1230002
[6] Brennen G K and Miyake A 2008 Phys. Rev. Lett. 101 010502
[7] Cai J, Miyake A, Dür W and Briegel H J 2010 Phys. Rev. A 82 052309
[8] Akimasa and Miyake 2011 Ann. Phys. 326 1656
[9] Chen X, Zeng B, Gu Z C, Yoshida B and Chuang I L 2009 Phys. Rev. Lett. 102 220501
[10] Wei T C, Affleck I and Raussendorf R 2011 Phys. Rev. Lett. 106 070501
[11] Liu J et al 2014 Chin. Phys. B 23 020213
[12] Sun X M, Zha X W and Qi J X 2013 Acta Phys. Sin. 62 230302 (in Chinese)
[13] Diao D S 2013 Chin. Phys. Lett. 30 010303
[14] Bloch I 2008 Nature 453 1016
[15] Ladd T D, Jelezko F, Laflamme R, Nakamura Y, Monroe C and O'Brien J L 2010 Nature 464 45
[16] Tokunaga Y, Kuwashiro S, Yamamoto T, Koashi M and Imoto N 2008 Phys. Rev. Lett. 100 210501
[17] Lanyon B P, Jurcevic P, Zwerger M, Hempel C, Martinez E A, Dür W, Briegel H J, Blatt R and Roos C F 2013 Phys. Rev. Lett. 111 210501
[18] Chiu Y J, Chen X and Chuang I L 2013 Phys. Rev. A 87 012305
[19] Bravyi S B and Kitaev A Y 2002 Ann. Phys. 298 210
[20] Kraus C V, Schuch N, Verstraete F and Cirac J I 2010 Phys. Rev. A 81 052338
[21] Gu Z C, Verstraete F and Wen X G 2010 arXiv:1004.2563
[22] Gross D and Eisert J 2007 Phys. Rev. Lett. 98 220503
[23] Gross D, Eisert J, Schuch N and Perez-Garcia D 2007 Phys. Rev. A 76 052315
[24] Gross D 2008 Ph. D. Dissertation (London: Imperial College London)
[25] Van den Nest M, Miyake A, Dür W and Briegel H J 2006 Phys. Rev. Lett. 97 150504
[26] Van den Nest M, Dür W, Vidal G and Briegel H J 2007 Phys. Rev. A 75 012337
[27] Zhou X, Leung D W and Chuang I L 2000 Phys. Rev. A 62 052316
[28] Feder D L 2012 Phys. Rev. A 85 012312
[29] Nielsen M A 2006 Rep. Math. Phys. 57 147
[30] Raussendorf R and Wei T C 2012 Annu. Rev. Condens. Matter Phys. 3 239
[31] Perdrix S 2005 Int. J. Quantum Inf. 3 219
[32] Perdrix S 2007 New J. Phys. 9 206
[33] Jorrand Ph and Perdrix S 2005 Quantum Informatics Proc. SPIE 5833 44

Related articles from Frontiers Journals
[1] Jian Li, Yang Zhou, and Qin Wang. Demonstration of Einstein–Podolsky–Rosen Steering with Multiple Observers via Sequential Measurements[J]. Chin. Phys. Lett., 2022, 39(11): 110302
[2] Yanxin Han, Zhongqi Sun, Tianqi Dou, Jipeng Wang, Zhenhua Li, Yuqing Huang, Pengyun Li, and Haiqiang Ma. Twin-Field Quantum Key Distribution Protocol Based on Wavelength-Division-Multiplexing Technology[J]. Chin. Phys. Lett., 2022, 39(7): 110302
[3] Jian Li, Jia-Li Zhu, Jiang Gao, Zhi-Guang Pang, and Qin Wang. Semi-Measurement-Device-Independent Quantum State Tomography[J]. Chin. Phys. Lett., 2022, 39(7): 110302
[4] Yanbo Lou, Xiaoyin Xu, Shengshuai Liu, and Jietai Jing. Low-Noise Intensity Amplification of a Bright Entangled Beam[J]. Chin. Phys. Lett., 2021, 38(9): 110302
[5] Keyu Su, Yunfei Wang, Shanchao Zhang, Zhuoping Kong, Yi Zhong, Jianfeng Li, Hui Yan, and Shi-Liang Zhu. Synchronization and Phase Shaping of Single Photons with High-Efficiency Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(9): 110302
[6] Huan-Yu Liu, Tai-Ping Sun, Yu-Chun Wu, and Guo-Ping Guo. Variational Quantum Algorithms for the Steady States of Open Quantum Systems[J]. Chin. Phys. Lett., 2021, 38(8): 110302
[7] Luyu Huang , Yichen Zhang, and Song Yu . Continuous-Variable Measurement-Device-Independent Quantum Key Distribution with One-Time Shot-Noise Unit Calibration[J]. Chin. Phys. Lett., 2021, 38(4): 110302
[8] A-Long Zhou , Dong Wang, Xiao-Gang Fan , Fei Ming , and Liu Ye. Mutual Restriction between Concurrence and Intrinsic Concurrence for Arbitrary Two-Qubit States[J]. Chin. Phys. Lett., 2020, 37(11): 110302
[9] Wei-Min Shang, Jie Zhou, Hui-Xian Meng, Jing-Ling Chen. Quantum Deletion of Copies of Two Non-orthogonal Quantum States via Weak Measurement[J]. Chin. Phys. Lett., 2020, 37(5): 110302
[10] Yu Mao, Qi Liu, Ying Guo, Hang Zhang, Jian Zhou. Four-State Modulation in Middle of a Quantum Channel for Continuous-Variable Quantum Key Distribution Protocol with Noiseless Linear Amplifier[J]. Chin. Phys. Lett., 2019, 36(10): 110302
[11] Sheng-Li Zhang, Song Yang. Methods for Derivation of Density Matrix of Arbitrary Multi-Mode Gaussian States from Its Phase Space Representation[J]. Chin. Phys. Lett., 2019, 36(9): 110302
[12] Guang-Zhao Tang, Shi-Hai Sun, Chun-Yan Li. Experimental Point-to-Multipoint Plug-and-Play Measurement-Device-Independent Quantum Key Distribution Network[J]. Chin. Phys. Lett., 2019, 36(7): 110302
[13] Ya-Hui Gan, Yang Wang, Wan-Su Bao, Ru-Shi He, Chun Zhou, Mu-Sheng Jiang. Finite-Key Analysis for a Practical High-Dimensional Quantum Key Distribution System Based on Time-Phase States[J]. Chin. Phys. Lett., 2019, 36(4): 110302
[14] Min Xiao, Di-Fang Zhang. Practical Quantum Private Query with Classical Participants[J]. Chin. Phys. Lett., 2019, 36(3): 110302
[15] Cai-Lang Xie, Ying Guo, Yi-Jun Wang, Duan Huang, Ling Zhang. Security Simulation of Continuous-Variable Quantum Key Distribution over Air-to-Water Channel Using Monte Carlo Method[J]. Chin. Phys. Lett., 2018, 35(9): 110302
Viewed
Full text


Abstract