CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Enhanced Current Carrying Capability of Au-ZnSe Nanowire-Au Nanostructure via High Energy Electron Irradiation |
TAN Yu1, WANG Yan-Guo2** |
1Science College, Hunan Agricultural University, Changsha 410128 2Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
|
|
Cite this article: |
TAN Yu, WANG Yan-Guo 2014 Chin. Phys. Lett. 31 107304 |
|
|
Abstract To enhance the performance of nanoelectronics based on Au-ZnSe nanowire (NW)-Au (M-S-M) nanostructure, the effect of irradiation of the high energy electron beam emitted from the electron gun of a transmission electron microscope operated at 200 kV on the current carrying capability of M-S-M nanostructure is investigated in situ. Focusing the high energy electron beam on a Au electrode, the current carrying capability of the M-S-M nanostructure can be enhanced significantly with respect to the case of the electron beam being switched off. In this case, the electrons in the electrode are excited by the incident high energy electron and can freely tunnel through the Schottky barriers at the metal-semiconductor NW (M-S) nanocontacts, which can effectively reduce Joule heat dissipation and remarkably improve the current carrying capability of M-S-M nanostructure due to the fact that the current carrying capability highly depends on the Joule heating effect of Schottky barriers at M-S nanocontacts.
|
|
Published: 31 October 2014
|
|
|
|
|
|
[1] Fan Z, Fan X D, Li A and Dong L X 2013 Nanoscale 5 12310 [2] Baek D J, Seol M L, Choi S J, Moon D I and Choi Y K 2012 Appl. Phys. Lett. 100 093106 [3] Devan R S, Patil R A, Lin J H and Ma Y R 2012 Adv. Funct. Mater. 22 3326 [4] Shen G Z and Chen D 2009 Nanoscale Res. Lett. 4 779 [5] Cui Q Z, Gao F, Mukherjee S and Gu Z Y 2009 Small 5 1246 [6] Lu W, Xie P and Lieber C M 2008 IEEE Trans. Electron Devices 55 2859 [7] Jung M, Song W, Sung L J, Kim N, Kim J, Park J, Lee H and Hirakawa K 2008 Nanotechnology 19 495702 [8] Collins P G, Hersam M, Arnold M, Martel R and Avouris P 2001 Phys. Rev. Lett. 86 3128 [9] Westover T, Jones R, Huang J Y, Wang G, Lai E and Talin A A 2009 Nano Lett. 9 257 [10] Zhao J, Sun H Y, Dai S, Wang Y and Zhu J 2011 Nano Lett. 11 4647 [11] Zhang Q, Qi J, Yang Y, Huang Y, Li X and Zhang Y 2010 Appl. Phys. Lett. 96 253112 [12] Nie A M, Liu J B, Dong C Z and Wang H T 2011 Nanotechnology 22 405703 [13] Wang Y G, Zeng Y P, Qu B H and Zhang Q L 2011 J. Appl. Phys. 109 104311 [14] Wiley B J, Wang Z, Wei J, Yin Y, Cobden D H and Xia Y 2006 Nano Lett. 6 2273 [15] Wang C, Hu Y J, Lieber C M and Sun S H 2008 J. Am. Chem. Soc. 130 8902 [16] Hadeed F O and Durkan C 2007 Appl. Phys. Lett. 91 123120 [17] Tan Y and Wang Y G 2014 Prog. Nat. Sci.: Mater. Int. 24 109 [18] Tohmyoh H and Fukui S 2009 Phys. Rev. B 80 155403 [19] Tan Y and Wang Y G 2013 Chin. Phys. Lett. 30 017902 [20] Zeng Y P, Wang Y G, Qu B H and Yu H C 2012 Chin. Phys. Lett. 29 088105 [21] Tan Y and Wang Y G 2013 Chin. Phys. Lett. 30 017901 [22] Chan Y F, Duan X F, Chan S K, Sou I K, Zhang X X and Wang N 2003 Appl. Phys. Lett. 83 2665 [23] Blomfield C J, Dharmadasa I M, Prior K A and Cavenett B C 1996 J. Cryst. Growth 159 727 [24] Kaye G W C and Laby T H 1995 Tables of Physical and Chemical Constants (London: Longman) p 214 [25] Sze S M 1981 Physics of Semiconductor Devices (New York: John Wiley & Sons) [26] Tan Y and Wang Y G 2013 Chin. Phys. Lett. 30 047901 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|