Chin. Phys. Lett.  2014, Vol. 31 Issue (10): 107304    DOI: 10.1088/0256-307X/31/10/107304
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Enhanced Current Carrying Capability of Au-ZnSe Nanowire-Au Nanostructure via High Energy Electron Irradiation
TAN Yu1, WANG Yan-Guo2**
1Science College, Hunan Agricultural University, Changsha 410128
2Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
Cite this article:   
TAN Yu, WANG Yan-Guo 2014 Chin. Phys. Lett. 31 107304
Download: PDF(552KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract To enhance the performance of nanoelectronics based on Au-ZnSe nanowire (NW)-Au (M-S-M) nanostructure, the effect of irradiation of the high energy electron beam emitted from the electron gun of a transmission electron microscope operated at 200 kV on the current carrying capability of M-S-M nanostructure is investigated in situ. Focusing the high energy electron beam on a Au electrode, the current carrying capability of the M-S-M nanostructure can be enhanced significantly with respect to the case of the electron beam being switched off. In this case, the electrons in the electrode are excited by the incident high energy electron and can freely tunnel through the Schottky barriers at the metal-semiconductor NW (M-S) nanocontacts, which can effectively reduce Joule heat dissipation and remarkably improve the current carrying capability of M-S-M nanostructure due to the fact that the current carrying capability highly depends on the Joule heating effect of Schottky barriers at M-S nanocontacts.
Published: 31 October 2014
PACS:  73.40.Sx (Metal-semiconductor-metal structures)  
  73.63.Rt (Nanoscale contacts)  
  68.37.Lp (Transmission electron microscopy (TEM))  
  85.30.Pq (Bipolar transistors)  
  78.55.Et (II-VI semiconductors)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/10/107304       OR      https://cpl.iphy.ac.cn/Y2014/V31/I10/107304
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
TAN Yu
WANG Yan-Guo
[1] Fan Z, Fan X D, Li A and Dong L X 2013 Nanoscale 5 12310
[2] Baek D J, Seol M L, Choi S J, Moon D I and Choi Y K 2012 Appl. Phys. Lett. 100 093106
[3] Devan R S, Patil R A, Lin J H and Ma Y R 2012 Adv. Funct. Mater. 22 3326
[4] Shen G Z and Chen D 2009 Nanoscale Res. Lett. 4 779
[5] Cui Q Z, Gao F, Mukherjee S and Gu Z Y 2009 Small 5 1246
[6] Lu W, Xie P and Lieber C M 2008 IEEE Trans. Electron Devices 55 2859
[7] Jung M, Song W, Sung L J, Kim N, Kim J, Park J, Lee H and Hirakawa K 2008 Nanotechnology 19 495702
[8] Collins P G, Hersam M, Arnold M, Martel R and Avouris P 2001 Phys. Rev. Lett. 86 3128
[9] Westover T, Jones R, Huang J Y, Wang G, Lai E and Talin A A 2009 Nano Lett. 9 257
[10] Zhao J, Sun H Y, Dai S, Wang Y and Zhu J 2011 Nano Lett. 11 4647
[11] Zhang Q, Qi J, Yang Y, Huang Y, Li X and Zhang Y 2010 Appl. Phys. Lett. 96 253112
[12] Nie A M, Liu J B, Dong C Z and Wang H T 2011 Nanotechnology 22 405703
[13] Wang Y G, Zeng Y P, Qu B H and Zhang Q L 2011 J. Appl. Phys. 109 104311
[14] Wiley B J, Wang Z, Wei J, Yin Y, Cobden D H and Xia Y 2006 Nano Lett. 6 2273
[15] Wang C, Hu Y J, Lieber C M and Sun S H 2008 J. Am. Chem. Soc. 130 8902
[16] Hadeed F O and Durkan C 2007 Appl. Phys. Lett. 91 123120
[17] Tan Y and Wang Y G 2014 Prog. Nat. Sci.: Mater. Int. 24 109
[18] Tohmyoh H and Fukui S 2009 Phys. Rev. B 80 155403
[19] Tan Y and Wang Y G 2013 Chin. Phys. Lett. 30 017902
[20] Zeng Y P, Wang Y G, Qu B H and Yu H C 2012 Chin. Phys. Lett. 29 088105
[21] Tan Y and Wang Y G 2013 Chin. Phys. Lett. 30 017901
[22] Chan Y F, Duan X F, Chan S K, Sou I K, Zhang X X and Wang N 2003 Appl. Phys. Lett. 83 2665
[23] Blomfield C J, Dharmadasa I M, Prior K A and Cavenett B C 1996 J. Cryst. Growth 159 727
[24] Kaye G W C and Laby T H 1995 Tables of Physical and Chemical Constants (London: Longman) p 214
[25] Sze S M 1981 Physics of Semiconductor Devices (New York: John Wiley & Sons)
[26] Tan Y and Wang Y G 2013 Chin. Phys. Lett. 30 047901
Related articles from Frontiers Journals
[1] Xue-Hui Lu, Cheng-Bin Jing, Lian-Wei Wang, Jun-Hao Chu. An Improved Room-Temperature Silicon Terahertz Photodetector on Sapphire Substrates[J]. Chin. Phys. Lett., 2019, 36(9): 107304
[2] Hang Heng, Rong Wang. Extreme Light Concentration and High Absorption of the Double Cylindrical Microcavities[J]. Chin. Phys. Lett., 2016, 33(08): 107304
[3] Jiao-Jiao Chen, Hong-Guang Piao, Zhao-Chu Luo, Cheng-Yue Xiong, Xiao-Zhong Zhang. Programmable Logic Based on Large Magnetoresistance of Germanium[J]. Chin. Phys. Lett., 2016, 33(04): 107304
[4] Sedighe Salimian, Mohammad Esmaeil Azim Araghi. Effect of Residual Charge Carrier on the Performance of a Graphene Field Effect Transistor[J]. Chin. Phys. Lett., 2016, 33(01): 107304
[5] HE Ze-Zhao, YANG Ke-Wu, YU Cui, LI Jia, LIU Qing-Bin, LU Wei-Li, FENG Zhi-Hong, CAI Shu-Jun. Improvement of Metal-Graphene Ohmic Contact Resistance in Bilayer Epitaxial Graphene Devices[J]. Chin. Phys. Lett., 2015, 32(11): 107304
[6] LIU Yang, HUANG Xu-Dong, FENG Yu-Jun, HE Hong-Liang. Controlling Factors of the Electric Field at the Triple Junction[J]. Chin. Phys. Lett., 2014, 31(2): 107304
[7] HENG Hang, YANG Li, YE Yong-Hong. Near-Field Enhancement and Absorption Properties of Metal-Dielectric-Metal Microcavities in the Mid-Infrared Range[J]. Chin. Phys. Lett., 2014, 31(1): 107304
[8] HU Shi-Jie,DU Wei,ZHANG Gui-Ping,GAO Miao,LU Zhong-Yi,WANG Xiao-Qun**. Exact Results for Intrinsic Electronic Transport in Graphene[J]. Chin. Phys. Lett., 2012, 29(5): 107304
[9] CHEN Cong, NING Ting-Yin, WANG Can**, ZHOU Yue-Liang, ZHANG Dong-Xiang, WANG Pei, MING Hai, YANG Guo-Zhen . Rectifying Characteristics and Transport Behavior in a Schottky Junction of CaCu 3Ti4O12 and Pt[J]. Chin. Phys. Lett., 2011, 28(8): 107304
[10] CHEN Bin**, YANG Yin-Tang, CHAI Chang-Chun, ZHANG Xian-Jun . Quantitatively Exploring the Effect of a Triangular Electrode on Performance Enhancement in a 4H-SiC Metal-Semiconductor-Metal Ultraviolet Photodetector[J]. Chin. Phys. Lett., 2011, 28(6): 107304
[11] HE Yu, ZHANG Ming, ZHANG Jin-Yu, WANG Yan, YU Zhi-Ping. Schottky Barrier Formation at a Carbon Nanotube-Scandium Junction[J]. Chin. Phys. Lett., 2009, 26(2): 107304
[12] WANG Yi, WANG Bing, ZHOU Zhi-Ping,. Tunable Omnidirectional Surface Plasmon Resonance in Cylindrical Plasmonic Structure[J]. Chin. Phys. Lett., 2008, 25(12): 107304
[13] LIN Jian, LI Di, CHEN Jiang-Shan, LI Jing-Hong, MA Dong-Ge. Nonvolatile Memory Devices Based on Gold Nanoparticle and Poly (N-Vinylcarbazole) Composite[J]. Chin. Phys. Lett., 2007, 24(11): 107304
[14] ZHAO Yao, XU Ming-Zhen, TAN Chang-Hua. Effect of Reverse Substrate Bias on Degradation of Ultra-Thin Gate-Oxide n-Channel Metal--Oxide--Semiconductor Field-Effect Transistors under Different Stress Modes[J]. Chin. Phys. Lett., 2005, 22(8): 107304
[15] UAN Jin-She, CHEN Guang-De, QI Ming, LI Ai-Zhen, XIE Lun-Jun. Surface Properties of Unintentionally Doped GaN Film and Its Contact Behaviour with Ni/Cr/Au Compound Metals[J]. Chin. Phys. Lett., 2003, 20(10): 107304
Viewed
Full text


Abstract