CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
A Forming-Free Bipolar Resistive Switching in HfOx-Based Memory with a Thin Ti Cap |
PANG Hua1,2, DENG Ning1,2** |
1Institute of Microelectronics, Tsinghua University, Beijing 100084 2Innovation Center for MicroNanoelectronics and Integrated System, Beijing 100084
|
|
Cite this article: |
PANG Hua, DENG Ning 2014 Chin. Phys. Lett. 31 107303 |
|
|
Abstract The electroforming process of Ti/HfOx stacked RRAM devices is removed via the combination of low temperature atomic layer deposition and post metal annealing. The Pt/Ti/HfOx/Pt RRAM devices show a forming-free bipolar resistive switching behavior. By x-ray photoelectron emission spectroscopy analysis, it is found that there are many oxygen vacancies and nonlattice oxygen pre-existing in the HfOx layer that play a key role in removing the electroforming process. In addition, when the thickness ratio of the Ti and HfOx layer is 1, the uniformity of the switching parameters of Pt/Ti/HfOx/Pt devices is significantly improved. The OFF/ON window maintains about 100 at the read voltage of 0.1 V.
|
|
Published: 31 October 2014
|
|
PACS: |
73.40.Rw
|
(Metal-insulator-metal structures)
|
|
71.30.+h
|
(Metal-insulator transitions and other electronic transitions)
|
|
72.20.Jv
|
(Charge carriers: generation, recombination, lifetime, and trapping)
|
|
|
|
|
[1] Baek I G, Kim D C, Lee M J, Kim H J, Yim E K, Lee M S, Lee J E, Ahn S E, Seo S, Lee J H, Park J C, Cha Y K, Park S O, Kim H S, Yoo I K, Chung U I, Moon J T and Ryu B I 2005 IEDM Tech. Dig. p 750 [2] Wser R, Dittmann R, Staikov C and Szot K 2009 Adv. Mater. 21 2632 [3] Sawa A 2008 Mater. Today 11 28 [4] Fang Z, Yu H Y, Li X, Singh N, Lo G Q and Kwong D L 2011 IEEE Electron Device Lett. 32 566 [5] Liu Q, Long S B, Wang W, Zuo Q Y, Zhang S, Chen J N and Liu M 2009 IEEE Electron Device Lett. 30 1335 [6] Verrelli E, Tsoukalas, Normand P, Kean A H and Boukos N 2013 Appl. Phys. Lett. 102 022909 [7] Chen Y S, Lee H Y, Chen P S, Wu T Y, Wang C C, Tzeng P J, Chen F, Tsai M J and Lien C 2010 IEEE Electron Device Lett. 31 1473 [8] Lee M J, Han S, Jeon S H, Park B H, Kang B S, Ahn S E, Kim K H, Lee C B, Kim C J, Yoo I K, Seo D H, Li X S Park J B, Lee J H and Park Y S 2009 Nano Lett. 9 1476 [9] Xu N, Liu L, Sun X, Chen C, Wang Y, Han D, Liu X, Han R, Kang J and Yu B 2008 Appl. Phys. Lett. 92 232112 [10] Zhang T, Ou X, Zhang W F, Yin J, Xia Y D and Liu Z G 2014 J. Phys. D: Appl. Phys. 47 065302 [11] Sharath S U, Bertaud T, Hildebrant E, Walczyk C, Calka P, Zaumseil P, Sowinska M, Walczyk D, Gloskovskii A, Schroeder T and Alff L 2014 Appl. Phys. Lett. 104 063502 [12] Stathis J H 1999 J. Appl. Phys. 86 5757 [13] Chen L, Xu Y, Sun Q Q, Zhou P, Wang P F, Ding S J and Zhang D W 2010 IEEE Electron Device Lett. 31 1296 [14] Jung C H, Park M K and Woo S I 2012 Appl. Phys. Lett. 100 262107 [15] Xu N, Gao B, Liu L F, Sun B, Liu X Y, Han R Q, Kang J F and Yu B 2008 Symposium on VLSI Technology Digest of Technical Papers p 100 [16] Lin C C, Chang Y P, Lin H B and Lin C H 2012 Nanoscale Res. Lett. 7 187 [17] Cao X, Li X, Gao X, Yu W, Liu X, Zhang Y, Chen L and Cheng X 2009 J. Appl. Phys. 106 73723 [18] Lin Y S, Zeng F, Tang S G, Liu H Y, Chen C, Gao S, Wang Y G and Pan F 2013 J. Appl. Phys. 113 064510 [19] Morant C, Galan L and Sanz J M 1990 Surf. Interface Anal. 112 304 [20] Peng C S, Chang W Y, Lee Y H, Lin M H, Chen F and Tsai M J 2012 Electrochem. Solid-State Lett. 15 H88 [21] Ismail M, Huang C Y and Panda D 2014 Nanoscale Res. Lett. 9 45 [22] Kuang Q W, Liu H X, Fan J W, Ma F and Zhang Y L 2012 J. Xidian University 39 1649 (in Chinese) [23] Chen P S, Chen Y S and Lee H Y 2013 Semicond. Sci. Technol. 28 025016 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|