Chin. Phys. Lett.  2014, Vol. 31 Issue (10): 106401    DOI: 10.1088/0256-307X/31/10/106401
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
A Kinetic Transition from Low to High Fragility in Cu-Zr Liquids
BI Qing-Ling, LÜ Yong-Jun**
School of Physics, Beijing Institute of Technology, Beijing 100081
Cite this article:   
BI Qing-Ling, Lü Yong-Jun 2014 Chin. Phys. Lett. 31 106401
Download: PDF(593KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Researchers have reported that Cu-Zr liquids are kinetically strong at the best glass-forming compositions. Here we systematically study the temperature dependence of viscosity and diffusion of Cu-Zr liquids using molecular dynamics simulations, and the results illustrate that the better glass formers are actually more fragile close to the glass transition. There is a kinetic transition from low to high fragility when the optimal glass-forming liquids are quenched into glass states. This transition is associated with the more rapid decrease of the excess entropy of the liquids above and close to the glass transition temperature, Tg, compared to other compositions. Accompanied by the transition to high fragility, peaks in the thermal expansivity and specific heat are observed at the optimal compositions. Furthermore, the Stokes–Einstein relation is examined over a wide composition range for Cu-Zr alloys, and the results indicate that glass-forming ability closely correlates with dynamical heterogeneity.
Published: 31 October 2014
PACS:  64.70.pe (Metallic glasses)  
  64.70.Q- (Theory and modeling of the glass transition)  
  66.20.-d (Viscosity of liquids; diffusive momentum transport)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/10/106401       OR      https://cpl.iphy.ac.cn/Y2014/V31/I10/106401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
BI Qing-Ling
Lü Yong-Jun
[1] Angell C A 1995 Science 267 1924
[2] Debenedetti P G and Stillinger F H 2001 Nature 410 259
[3] Inoue A and Nishiyama N 2007 MRS Bull. 32 651
[4] Wang W H 2012 Prog. Mater. Sci. 57 487
[5] Wang W H 2011 J. Appl. Phys. 110 053521
[6] Greer A L 1993 Nature 366 303
[7] Tang C and Harrowell P 2013 Nat. Mater. 12 507
[8] Lu Z P and Liu C T 2003 Phys. Rev. Lett. 91 115505
[9] Mukherjee S, Schroers J, Johnson W L and Rhim W K 2005 Phys. Rev. Lett. 94 245501
[10] Senkov O N 2007 Phys. Rev. B 76 104202
[11] Fujita T, Konno K, Zhang W, Kumar V, Matsuura M, Inoue A, Sakurai T and Chen M W 2009 Phys. Rev. Lett. 103 075502
[12] Wang Q, Liu C T, Yang Y, Dong Y D and Liu J 2011 Phys. Rev. Lett. 106 215505
[13] Yang L, Guo G Q, Chen L Y, Huang C L, Ge T, Chen D, Liaw P K, Saksl K, Ren Y, Zeng Q S, LaQua B, Chen F G and Jiang J Z 2012 Phys. Rev. Lett. 109 105502
[14] Guan P F, Fujita T, Hirata A, Liu Y H and Chen M W 2012 Phys. Rev. Lett. 108 175501
[15] An Q, Samwer K, Goddard W A, Johnson W L, Jaramillo-Botero A, Garret G and Demetriou M D 2012 J. Phys. Chem. Lett. 3 3143
[16] Yu C Y, Liu X J, Zheng G P and Liu C T 2013 Sci. Rep. 3 2124
[17] Guerdane M, Teichler H and Nestler B 2013 Phys. Rev. Lett. 110 086105
[18] Tang M B, Zhao D Q, Pan M X and Wang W H 2004 Chin. Phys. Lett. 21 901
[19] Inoue A and Zhang W 2004 Mater. Trans. 45 584
[20] Xu D, Lohwongwatana B, Duan G, Johnson W L and Garland C 2004 Acta Mater. 52 2621
[21] Li Y, Guo Q, Kalb J A and Thompson C A 2008 Science 322 1816
[22] Bendert J C, Gangopadhyay A K, Mauro N A and Kelton K F 2012 Phys. Rev. Lett. 109 185901
[23] Bendert J C and Kelton K F 2013 J. Non-Cryst. Solids 376 205
[24] Angell C A 1988 J. Phys. Chem. Solids 49 863
[25] Mendelev M I 2009 Philos. Mag. 89 967
[26] Nosé S 1984 J. Chem. Phys. 81 511
[27] Hoover W G 1985 Phys. Rev. A 31 1695
[28] Richert R and Angell C A 1998 J. Chem. Phys. 108 9016
[29] Berthier L and Biroli G 2011 Rev. Mod. Phys. 83 587
[30] Ediger M D 2000 Annu. Rev. Phys. Chem. 51 99
[31] Donati C, Glotzer S C, Poole P H, Kob W and Plimpton S J 1999 Phys. Rev. E 60 3107
[32] Widmer-Cooper A, Harrowell P and Fynewever H 2004 Phys. Rev. Lett. 93 135701
[33] Doliwa B and Heuer A 2002 J. Non-Cryst. Solids 307 32
[34] Cheng H, Lü Y J and Chen M 2009 J. Chem. Phys. 131 044502
[35] Horbach J, Das S K, Griesche A, Macht M P, Frohberg G and Meyer A 2007 Phys. Rev. B 75 174304
Related articles from Frontiers Journals
[1] Juntao Huo, Kangyuan Li, Bowen Zang, Meng Gao, Li-Min Wang, Baoan Sun, Maozhi Li, Lijian Song, Jun-Qiang Wang, and Wei-Hua Wang. Reply to “Comment on ‘High Mixing Entropy Enhanced Energy States in Metallic Glasses’”[J]. Chin. Phys. Lett., 2022, 39(11): 106401
[2] Juntao Huo, Kangyuan Li, Bowen Zang, Meng Gao, Li-Min Wang, Baoan Sun, Maozhi Li, Lijian Song, Jun-Qiang Wang, and Wei-Hua Wang. High Mixing Entropy Enhanced Energy States in Metallic Glasses[J]. Chin. Phys. Lett., 2022, 39(4): 106401
[3] Tong Lu, Song Ling Liu, Yong Hao Sun, Wei-Hua Wang, and Ming-Xiang Pan. A Free-Volume Model for Thermal Expansion of Metallic Glass[J]. Chin. Phys. Lett., 2022, 39(3): 106401
[4] Dong-Mei Li, Lan-Sheng Chen, Peng Yu, Ding Ding, and Lei Xia. A New Cu-Based Metallic Glass Composite with Excellent Mechanical Properties[J]. Chin. Phys. Lett., 2020, 37(8): 106401
[5] Deyan Sun, Cheng Shang, Zhipan Liu, Xingao Gong. Intrinsic Features of an Ideal Glass[J]. Chin. Phys. Lett., 2017, 34(2): 106401
[6] Zi-Jing Li, Lin-Ran Zhao, Yu-Ting Wang, Ze-Ming Chen, Wen-Kang Tu, Ya-Qi Zhang, Hong Bo, Ying-Dan Liu, Li-Min Wang. An Attempt to Prepare Metallic Glasses from Quasicrystals[J]. Chin. Phys. Lett., 2016, 33(04): 106401
[7] CHAI Kan, LIN Tie-Song, HE Peng, SUN Jian-Fei. The Kinetic Theory of Growth of Zr-Sn Diffusion Layers on Zr55Cu30Al10Ni5 Metallic Glass[J]. Chin. Phys. Lett., 2014, 31(11): 106401
[8] KE Hai-Bo,ZHAO Zuo-Feng,WEN Ping**,WANG Wei-Hua. Specific Heat in a Typical Metallic Glass Former[J]. Chin. Phys. Lett., 2012, 29(4): 106401
[9] ZHANG Chun-Zhi, HU Li-Na**, BIAN Xiu-Fang, YUE Yuan-Zheng, . Fragile-to-Strong Transition in Al-Ni-M (M=La, Pr, Nd) Metallic Glasses[J]. Chin. Phys. Lett., 2010, 27(11): 106401
[10] ZHUO Long-Chao, PANG Shu-Jie, WANG Hui, ZHANG Tao. Ductile Bulk Aluminum-Based Alloy with Good Glass-Forming Ability and High Strength[J]. Chin. Phys. Lett., 2009, 26(6): 106401
[11] JIANG Min-Qiang, JIANG Si-Yue$, DAI Lan-Hong,. Inherent Shear-Dilatation Coexistence in Metallic Glass[J]. Chin. Phys. Lett., 2009, 26(1): 106401
[12] YANG Hong-Wang, TONG Wei-Ping, ZHAO Xiang, ZUO Liang, WANG Jian-Qiang. Observation of β-Relaxation in Sub-Tg Isothermally Annealed Al-Based Metallic Glasses[J]. Chin. Phys. Lett., 2008, 25(9): 106401
[13] GUO Xiao-Lin, SHAN De-Bin, MA Ming-Zhen, GUO Bin. Compressive Deformation Induced Nanocrystallization of a Supercooled Zr-Based Bulk Metallic Glass[J]. Chin. Phys. Lett., 2008, 25(6): 106401
Viewed
Full text


Abstract