Chin. Phys. Lett.  2014, Vol. 31 Issue (10): 104302    DOI: 10.1088/0256-307X/31/10/104302
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Guided Wave Propagation in a Gold Electrode Film on a Pb(Mg1/3Nb2/3)O3–33%PbTiO3 Ferroelectric Single Crystal Substrate
HUANG Nai-Xing1,2, LÜ Tian-Quan1**, ZHANG Rui1**, WANG Yu-Ling1, CAO Wen-Wu1,3
1Condensed Matter Science and Technology Institute, Department of Physics, Harbin Institute of Technology, Harbin 150080
2Department of Physics, College of Electronic Science, Northeast Petroleum University, Daqing 163318
3Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
Cite this article:   
HUANG Nai-Xing, Lü Tian-Quan, ZHANG Rui et al  2014 Chin. Phys. Lett. 31 104302
Download: PDF(982KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Dispersion relations of Love mode acoustic guided waves propagation in Pb(Mg1/3Nb2/3)O3–33%PbTiO3 (PMN-0.33 PT) single crystal with a gold electrode film are calculated. There is no cross coupling among Love wave modes, which is conducive to eliminating the cross interference between modes. The general formula is derived to precisely measure the thickness of the electrode. More acoustic energy would be concentrated inside the electrode with the increase of film thickness for a given frequency. Compared with the PZT-5 ceramic, [001]c poled PMN-33%PT single crystal has a slower attenuation of the amplitude of the acoustic guided wave. Therefore, single crystal is extremely suitable for making low loss acoustic wave devices with a high operating frequency.
Published: 31 October 2014
PACS:  43.20.+g (General linear acoustics)  
  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
  77.84.-s (Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/10/104302       OR      https://cpl.iphy.ac.cn/Y2014/V31/I10/104302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HUANG Nai-Xing
Lü Tian-Quan
ZHANG Rui
WANG Yu-Ling
CAO Wen-Wu
[1] Jaffe B, Cook W R and Jaffe H 1971 Piezoelectric Ceramics (New York: Academic) chap 7 p 135
[2] Zhang Q and Whatmore R W 2001 J. Phys. D: Appl. Phys. 34 2296
[3] Park S E and Shrout T R 1997 J. Appl. Phys. 82 1804
[4] Zhang L Y, Zhu K and Liu Y L 2012 Chin. Phys. B 21 017803
[5] Guo H L, Yang H Y, Tang H F, Hou H J, Zheng Y L and Zhu J G 2013 Acta Phys. Sin. 62 130704 (in Chinese)
[6] Huang N X, Zhang R and Cao W W 2007 Appl. Phys. Lett. 91 122903
[7] Wang Y L, Zhang R, Sun E W, Song W and Cao W W 2013 Chin. Phys. Lett. 30 096301
[8] Zhang R, Jiang B and Cao W W 2001 J. Appl. Phys. 90 3471
[9] Huang N X, Lü T Q, Zhang R and Cao W W 2013 Appl. Phys. Lett. 103 053507
[10] Ingebrigtsen K A 1969 J. Appl. Phys. 40 2681
[11] Farnell G W and Adler E L 1972 Phys. Acoust. (New York: Academic) Vol IX Chap 2 p 35
[12] Berlincourt D A, Curran D R and Jaffe H 1964 Physical Acoustics-Principles and Methods (New York: Academic) vol 1 chap 3 p 202
[13] Jakoby B and Vellekoop M J 1997 Smart Mater. Struct. 6 668
[14] Liu J S and He S T 2010 J. Appl. Phys. 107 073511
[15] Du J K, Jin X Y, Wang J and Xian K 2007 Ultrasonics 46 13
Related articles from Frontiers Journals
[1] Ze-Lin Kong, Zhi-Kang Lin, and Jian-Hua Jiang. Topological Wannier Cycles for the Bulk and Edges[J]. Chin. Phys. Lett., 2022, 39(8): 104302
[2] Zhi-Kang Lin, Shi-Qiao Wu, Hai-Xiao Wang, and Jian-Hua Jiang. Higher-Order Topological Spin Hall Effect of Sound[J]. Chin. Phys. Lett., 2020, 37(7): 104302
[3] Jian Li, Hong-Juan Yang, Jun Ma, Xiang Gao, Jun-Hong Li, Jian-Zheng Cheng, Wen Wang, Cheng-Hao Wang. Detection and Location of a Target in Layered Media without Prior Knowledge of Medium Parameters *[J]. Chin. Phys. Lett., 0, (): 104302
[4] Jian Li, Hong-Juan Yang, Jun Ma, Xiang Gao, Jun-Hong Li, Jian-Zheng Cheng, Wen Wang, Cheng-Hao Wang. Detection and Location of a Target in Layered Media without Prior Knowledge of Medium Parameters[J]. Chin. Phys. Lett., 2020, 37(6): 104302
[5] Shu-Huan Xie, Xinsheng Fang, Peng-Qi Li, Sibo Huang, Yu-Gui Peng, Ya-Xi Shen, Yong Li, Xue-Feng Zhu. Tunable Double-Band Perfect Absorbers via Acoustic Metasurfaces with Nesting Helical Tracks[J]. Chin. Phys. Lett., 2020, 37(5): 104302
[6] Hong-Juan Yang, Jian Li, Xiang Gao, Jun Ma, Jun-Hong Li, Wen Wang, Cheng-Hao Wang. Detection and Location of a Target in Layered Media by Snapshot Time Reversal and Reverse Time Migration Mixed Method[J]. Chin. Phys. Lett., 2019, 36(11): 104302
[7] Han Zhang, Yang Gao. Acoustic Vortex Beam Generation by a Piezoelectric Transducer Using Spiral Electrodes[J]. Chin. Phys. Lett., 2019, 36(11): 104302
[8] Hang Yang, Xin Zhang, Jian-hua Guo, Fu-gen Wu, Yuan-wei Yao. Influence of Coating Layer on Acoustic Wave Propagation in a Random Complex Medium with Resonant Scatterers[J]. Chin. Phys. Lett., 2019, 36(8): 104302
[9] Cun Wang, Shan-De Li, Wei-Guang Zheng, Qi-Bai Huang. Acoustic Absorption Characteristics of New Underwater Omnidirectional Absorber[J]. Chin. Phys. Lett., 2019, 36(4): 104302
[10] Zhi-Miao Lu, Li Cai, Ji-Hong Wen, Xing Chen. Physically Realizable Broadband Acoustic Metamaterials with Anisotropic Density[J]. Chin. Phys. Lett., 2019, 36(2): 104302
[11] H. Barati, Z. Basiri, A. Abdolali. Acoustic Multi Emission Lens via Transformation Acoustics[J]. Chin. Phys. Lett., 2018, 35(10): 104302
[12] Jie Hu, Bin Liang, Xiao-Jun Qiu. Transparent and Ultra-lightweight Design for Ultra-Broadband Asymmetric Transmission of Airborne Sound[J]. Chin. Phys. Lett., 2018, 35(2): 104302
[13] Zheng Xu, Meng-Lu Qian, Qian Cheng, Xiao-Jun Liu. Manipulating Backward Propagation of Acoustic Waves by a Periodical Structure[J]. Chin. Phys. Lett., 2016, 33(11): 104302
[14] Si-Yuan Yu, Xu Ni, Ye-Long Xu, Cheng He, Priyanka Nayar, Ming-Hui Lu, Yan-Feng Chen. Extraordinary Acoustic Transmission in a Helmholtz Resonance Cavity-Constructed Acoustic Grating[J]. Chin. Phys. Lett., 2016, 33(04): 104302
[15] Wen-Fa Zhu, Hai-Yan Zhang, Jian Xu, Xiao-Dong Chai. Three-Dimensional Scattering of an Incident Plane Shear Horizontal Guided Wave by a Partly through-Thickness Hole in a Plate[J]. Chin. Phys. Lett., 2016, 33(01): 104302
Viewed
Full text


Abstract