FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
High-Power High-Efficiency Laser Power Transmission at 100 m Using Optimized Multi-Cell GaAs Converter |
HE Tao1, YANG Su-Hui1**, Miguel Ángel Muñoz2, ZHANG Hai-Yang1, ZHAO Chang-Ming1, ZHANG Yi-Chen1, XU Peng1 |
1School of Optoelectronics, Beijing Institute of Technology, Beijing 100081 2Physical Properties Laboratory, Technical University of Madrid, Madrid 28040, Spain
|
|
Cite this article: |
HE Tao, YANG Su-Hui, Miguel ángel Mu?oz et al 2014 Chin. Phys. Lett. 31 104203 |
|
|
Abstract A high-power high-efficiency laser power transmission system at 100 m based on an optimized multi-cell GaAs converter capable of supplying 9.7 W of electricity is demonstrated. An I–V testing system integrated with a data acquisition circuit and an analysis software is designed to measure the efficiency and the I–V characteristics of the laser power converter (LPC). The dependencies of the converter's efficiency with respect to wavelength, laser intensity and temperature are analyzed. A diode laser with 793 nm of wavelength and 24 W of power is used to test the LPC and the software. The maximum efficiency of the LPC is 48.4% at an input laser power of 8 W at room temperature. When the input laser power is 24 W (laser intensity of 60000 W/m2), the efficiency is 40.4% and the output voltage is 4 V. The overall efficiency from electricity to electricity is 11.6%.
|
|
Published: 31 October 2014
|
|
PACS: |
42.15.Eq
|
(Optical system design)
|
|
42.68.Ay
|
(Propagation, transmission, attenuation, and radiative transfer)
|
|
72.40.+w
|
(Photoconduction and photovoltaic effects)
|
|
84.60.Jt
|
(Photoelectric conversion)
|
|
|
|
|
[1] Pe?a R and Algora C 2001 IEEE Trans. Electron Devices 48 196 [2] Pe?a R and Algora C 2012 Prog. Photovolt.: Res. Appl. 20 117 [3] Yugami H, Kanamori Y, Arashi H, Niino M, Moro A, Eguchi K, Okada Y and Endo A 1997 Proc. IEEE Conf. Energy Conversion Engineering (Honolulu HI 1997) p 625 [4] Steinsiek F, Foth W P, Weber K H, Foth H J and Sch?fer C 2003 Proc. 54th International Astronautical Congress (Bremen, Germany 2003) p 169 [5] Katz E A, Gordon J M, Tassew W and Feuermann D 2006 Appl. Phys. 100 044514 [6] Gerard J B, Peter M, Erik J H, John J S, Nash L J, Dominic J F F, Ian M B and Geoffrey D 2010 Proc. 6th International AIP Conf. on Concentrating Photovoltaic Aystems: CPV-6 (Freiburg, Germany 2010) p 16 [7] Algora C, Ortiz E, Stolle I R, Diaz V, Pe?a R, Andreev V M, Khvostikov V P and Rumyantsev V D 2001 IEEE Trans. Electron Devices 48 840 [8] Mukherjee J, Jarvis S, Perren M and Sweeney S J 2013 J. Phys. D: Appl. Phys. 46 264006 [9] He T, Yang S H, Zhang H Y, Zhao C M, Xu P, Hao J Y and Wang H X 2013 Chin. J. Lasers 40 0317001 [10] Lautenschlager P, Garriga M, Logothetidis S and Caedona M 1987 Phys. Rev. B 35 9174 [11] Cui M, Chen N F, Deng J X and Liu L Y 2013 Chin. Phys. B 22 84208 [12] Fan J C C 1986 Sol. Cells 17 309 [13] Yang C C, Jang C H, Sheu J K, Lee M L, Tu S L, Huang F W, Yeh Y H and Lai W C 2011 Opt. Express 19 A695 [14] Zhang D Y, Zheng X H, Li X F, Wu Y Y, Wang J F and Yang H 2012 Chin. Phys. Lett. 29 068801 [15] Mathews I, O'Mahony D, Corbett B and Morrison A P 2012 Opt. Express 20 A754 [16] Zhang W, Chen C, Jia R, Janssen G J M, Zhang D S, Xing Z, Bronsveld P C P, Weeber A W, Jin Z and Liu X Y 2013 Chin. Phys. Lett. 30 078801 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|