Chin. Phys. Lett.  2014, Vol. 31 Issue (10): 104201    DOI: 10.1088/0256-307X/31/10/104201
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
High-Precision Two-Dimensional Atom Localization in a Cascade-Type Atomic System
CHEN Jing-Dong1**, FANG Yu-Hong1, ZHANG Ting2
1College of Physics and Information Engineering, Minnan Normal University, Zhangzhou 363000
2College of Chemistry and Environment, Minnan Normal University, Zhangzhou 363000
Cite this article:   
CHEN Jing-Dong, FANG Yu-Hong, ZHANG Ting 2014 Chin. Phys. Lett. 31 104201
Download: PDF(746KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the behavior of two-dimensional (2D) atom localization in a three-level cascade-type atomic system via measuring the probe absorption. It is found that the precision of the atom localization can be improved by adjusting probe detuning and coupling a coherent coupling field and standing-wave fields to the same atomic transition. Remarkably, a single localization peak can be obtained by adjusting appropriate system parameters, and some corresponding explanations are also given.
Published: 31 October 2014
PACS:  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  42.50.Nn (Quantum optical phenomena in absorbing, amplifying, dispersive and conducting media; cooperative phenomena in quantum optical systems)  
  32.80.Qk (Coherent control of atomic interactions with photons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/10/104201       OR      https://cpl.iphy.ac.cn/Y2014/V31/I10/104201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Jing-Dong
FANG Yu-Hong
ZHANG Ting
[1] Metcalf H and Van der Straten P 1994 Phys. Rep. 244 203
[2] Phillips W D 1998 Rev. Mod. Phys. 70 721
[3] Johnson K S, Thywissen J H, Dekker N H, Berggren K K, Chu A P, Younkin R and Prentiss M 1998 Science 280 1583
[4] Wu Y and C?té R 2002 Phys. Rev. A 65 053603
[5] Evers J, Qamar S and Zubairy M S 2007 Phys. Rev. A 75 053809
[6] Quadt R, Collett M and Walls D F 1995 Phys. Rev. Lett. 74 351
[7] Thomas J E and Wang L J 1995 Phys. Rep. 262 311
[8] Herkommer A M, Schleich W P and Zubairy M S 1997 J. Mod. Opt. 44 2507
[9] Qamar S, Zhu S Y and Zubairy M S 2000 Phys. Rev. A 61 063806
[10] Paspalakis E and Knight P L 2001 Phys. Rev. A 63 065802
[11] Paspalakis E, Terzis A F and Knight P L 2005 J. Mod. Opt. 52 1685
[12] Sahrai M, Habib T, Kapale K T and Zubairy M S 2005 Phys. Rev. A 72 013820
[13] Liu C P, Gong S Q, Cheng D C, Fan X J and Xu Z Z 2006 Phys. Rev. A 73 025801
[14] Cheng D C, Niu Y P, Li R X and Gong S Q 2006 J. Opt. Soc. Am. B 23 2180
[15] Qamar S, Mehmood A and Qamar S 2009 Phys. Rev. A 79 033848
[16] Qamar S, Evers J and Zubairy M S 2009 Phys. Rev. A 79 043814
[17] Xu J and Hu X M 2007 Phys. Rev. A 76 013830
[18] Xu J and Hu X M 2007 Chin. Phys. Lett. 24 933
[19] Shen W B, Xu J and Hu X M 2007 Chin. Phys. Lett. 24 2583
[20] Dutta B K, Panchadhyayee P and Mahapatra P K 2013 Laser Phys. 23 045201
[21] Rahmatullah and Qamar S 2013 Phys. Lett. A 377 1587
[22] Jin L L, Sun H, Niu Y P and Gong S Q 2009 J. Mod. Opt. 56 805
[23] Ivanov V and Rozhdestvensky Y 2010 Phys. Rev. A 81 033809
[24] Li J, Yu R, Liu M, Ding C and Yang X 2011 Phys. Lett. A 375 3978
[25] Ding C, Li J, Zhan Z and Yang X 2011 Phys. Rev. A 83 063834
[26] Ding C, Li J, Yu R, Hao X and Wu Y 2012 Opt. Express 20 7870
[27] Wang Z, Yu B, Xu F, Zhen S and Wu X 2012 Appl. Phys. B 108 479
[28] Wang Z P, Ge Q, Ruan Y H and Yu B L 2013 Chin. Phys. B 22 074203
[29] Wu J C, Liu Z D, Zheng J and Wang H Q 2013 Chin. Phys. Lett. 30 034205
[30] Wu J C, Liu Z D and Zheng J 2013 Chin. Phys. B 22 044203
[31] Wan R G and Zhang T Y 2011 Opt. Express 19 25823
[32] Wan R G, Zhang T Y and Kou J 2013 Phys. Rev. A 87 043816
[33] Rahmatullah and Qamar S 2013 Phys. Rev. A 88 013846
[34] Wu J C and Ai B Q 2014 Europhys. Lett. 107 14002
[35] Li H, Sautenkov V A, Kash M M, Sokolov A V, Welch G R, Rostovtsev Y V, Zubairy M S and Scully M O 2008 Phys. Rev. A 78 013803
[36] Proite N A, Simmons Z J and Yavuz D D 2011 Phys. Rev. A 83 041803(R)
[37] Miles J A, Simmons Z J and Yavuz D D 2013 Phys. Rev. X 3 031014
[38] Meystre P and Sargent I I I M 1999 Elements Quantum Optics 3rd edn (Berlin: Springer-Verlag)
[39] Harris S E 1997 Phys. Today 50(7) 36
[40] Wu Y and Yang X 2005 Phys. Rev. A 71 053806
Related articles from Frontiers Journals
[1] Shaoxing Liu, Xuanying Lai, Ce Yang, and J. F. Chen. Towards High-Dimensional Entanglement in Path: Photon-Source Produced from a Two-Dimensional Atomic Cloud[J]. Chin. Phys. Lett., 2021, 38(8): 104201
[2] Tianyu Li, Yong-Sheng Zhang, and Wei Yi. Two-Dimensional Quantum Walk with Non-Hermitian Skin Effects[J]. Chin. Phys. Lett., 2021, 38(3): 104201
[3] Kang-Bo Tan, Hong-Min Lu, Qiao Guan, Guang-Shuo Zhang, Chong-Chong Chen. Variational Analysis of High-Frequency Effect on Moving Electromagnetic Interface[J]. Chin. Phys. Lett., 2018, 35(7): 104201
[4] Jin-Song Huang, Jia-Hao Zhang, Yan Wang, Zhong-Hui Xu. Designing Fano-Like Quantum Routing via Atomic Dipole-Dipole Interactions[J]. Chin. Phys. Lett., 2018, 35(3): 104201
[5] Yin-Xing Ding, Lu-Lu Wang, Li Yu. Babinet-Inverted Optical Nanoantenna Analogue of Electromagnetically Induced Transparency[J]. Chin. Phys. Lett., 2018, 35(1): 104201
[6] Yu-Xin Zhuang, Dai-Ting Shi, Da-Wei Li, Yi-Gen Wang, Xiao-Na Zhao, Jian-Ye Zhao, Zhong Wang. Erratum: An Accurate Frequency Control Method and Atomic Clock Based on Coherent Population Beating Phenomenon [Chin. Phys. Lett. 33(2016)040601][J]. Chin. Phys. Lett., 2017, 34(10): 104201
[7] Li Wang, Yi-Hong Qi, Li Deng , Yue-Ping Niu, Shang-Qing Gong, Hong-Ju Guo. Effect of Phase Modulation on Electromagnetically Induced Grating in a Five-Level M-Type Atomic System[J]. Chin. Phys. Lett., 2017, 34(7): 104201
[8] Hong-Wei Guo, Shun-Cai Zhao, Xiao-Jing Wei, Xin Li. Negative Refraction Index Manipulated by a Displaced Squeezed Fock State in the Mesoscopic Dissipative Left-Handed Transmission Line[J]. Chin. Phys. Lett., 2017, 34(3): 104201
[9] Yue-Chun Jiao, Xiao-Xuan Han, Zhi-Wei Yang, Jian-Ming Zhao, Suo-Tang Jia. Electromagnetically Induced Transparency in a Cold Gas with Strong Atomic Interactions[J]. Chin. Phys. Lett., 2016, 33(12): 104201
[10] Li-Yun Zhang, Hua-Jie Hu, Xin Yang, Ming-Tao Cao, Dong Wei, Pei Zhang, Hong Gao, Fu-Li Li. The Image Property in an EIT Information Transfer System[J]. Chin. Phys. Lett., 2016, 33(12): 104201
[11] Yan-Li Xue, Ke Zhang, Bao-Hua Feng, Zhi-Yuan Li. Inhibition of Atomic Decay in Strongly Coupled Photonic Crystal Cavities[J]. Chin. Phys. Lett., 2016, 33(07): 104201
[12] Yu-Xin Zhuang, Dai-Ting Shi, Da-Wei Li, Yi-Gen Wang, Xiao-Na Zhao, Jian-Ye Zhao, Zhong Wang. An Accurate Frequency Control Method and Atomic Clock Based on Coherent Population Beating Phenomenon[J]. Chin. Phys. Lett., 2016, 33(04): 104201
[13] R. Nasehi, S. H. Asadpour, H. Rahimpour Soleimani, M. Mahmoudi. Controlling the Goos–Hänchen Shift via Incoherent Pumping Field and Electron Tunneling in the Triple Coupled InGaAs/GaAs Quantum Dots[J]. Chin. Phys. Lett., 2016, 33(01): 104201
[14] WANG Chun-Fang, WANG Feng, YANG Li-Ru. Electromagnetically Induced Self-Imaging in Four-Level Doppler Broadening Medium[J]. Chin. Phys. Lett., 2015, 32(09): 104201
[15] YANG Li-Ru, WANG Chun-Fang, ZHANG Da-Wei. Transverse Optical Properties of the Eu3+:Y2SiO5 Crystal in Electromagnetically Induced Transparency[J]. Chin. Phys. Lett., 2015, 32(06): 104201
Viewed
Full text


Abstract