Chin. Phys. Lett.  2014, Vol. 31 Issue (10): 102101    DOI: 10.1088/0256-307X/31/10/102101
NUCLEAR PHYSICS |
Simulation and Characterization of Aluminium Three-Dimensional Resonator for Quantum Computation
ZHAO Hu1, LI Tie-Fu1,2**, LIU Qi-Chun1, LIU Jian-She1, CHEN Wei1**
1Institute of Microelectronics, and Tsinghua National Laboratory of Information Science and Technology, Tsinghua University, Beijing 100084
2Beijing Computational Science Research Center, Beijing 100084
Cite this article:   
ZHAO Hu, LI Tie-Fu, LIU Qi-Chun et al  2014 Chin. Phys. Lett. 31 102101
Download: PDF(987KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present the simulation and characterization of several aluminium three-dimensional (3D) resonators, which can be used for superconducting quantum computation. By changing the conductivity of the aluminium in a high frequency structure simulator, the loaded quality factor at room temperature and base temperature (20 mK) can be simulated. From S21 measurement, we can characterize the properties of the resonators. The simulated and experimental results can be fitted well by exponential equations.
Published: 31 October 2014
PACS:  21.65.Mn (Equations of state of nuclear matter)  
  21.45.Ff (Three-nucleon forces)  
  21.30.Fe (Forces in hadronic systems and effective interactions)  
  21.65.Ef (Symmetry energy)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/10/102101       OR      https://cpl.iphy.ac.cn/Y2014/V31/I10/102101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHAO Hu
LI Tie-Fu
LIU Qi-Chun
LIU Jian-She
CHEN Wei
[1] You J Q and Nori F 2005 Phys. Today 58 42
[2] Clarke J and Wilhelm F K 2008 Nature 453 1031
[3] Nakamura Y, Pashkin Y A and Tsai J S 1999 Nature 398 786
[4] Mooij J E, Orlando T P, Levitov L, Tian L, Van der Wal C H and Lloyd S 1999 Science 285 1036
[5] Friedman J R, Patel V, Chen W, Tolpygo S K and Lukens J E 2000 Nature 406 43
[6] Martinis J M, Nam S and Aumentado J 2002 Phys. Rev. Lett. 89 117901
[7] Wallraff A, Schuster D I, Blais A, Frunzlo L, Huang R S, Majer J, Kumar S, Girvin S M and Schoelkopf R J 2004 Nature 431 162
[8] Blais A, Huang R S, Wallraff A, Girvin S M and Schoelkopf R J 2004 Phys. Rev. A 69 062320
[9] Majer J, Chow J M, Gambetta J M, Koch J, Johnson B R, Schreier J A, Frunzio L, Schuster D I, Houck A A, Wallraff A, Blais A, Devoret M H, Girvin S M and Schoelkopf R J 2007 Nature 449 443
[10] Houck A A, Schuster D I, Gambetta J M, Schreier J A, Johnson B R, Chow J M, Frunzio L, Majer J, Devoret M H, Girvin S M and Schoelkopf R J 2007 Nature 449 328
[11] G?ppl M, Fragner A, Baur M, Bianchetti R, Filipp S, Fink J M, Leek P J, Puebla G, Steffen L and Wallraff A 2008 J. Appl. Phys. 104 113904
[12] Song C, DeFeo M P, Yu K and Plourde L T 2009 Appl. Phys. Lett. 95 232501
[13] Zhao N, Liu J S, Li H, Li T F and Chen W 2012 Chin. Phys. Lett. 29 088401
[14] Zhou P J, Wang Y W and Wei L F 2014 Chin. Phys. Lett. 31 067402
[15] Reagor M, Paik H, Gatelani G, Sun L Y, Axline C, Holland E, Pop L M, Masluk N A, Brecht T, Frunzio L, Devoret M H, Glazman L and Schoelkopf R J 2013 Appl. Phys. Lett. 102 192604
[16] Megrant A, Neill C, Barends R, Chiaro B, Chen Y, Feigl L, Kelly J, Lucero E, Mariantoni M, O'Malley P P J, Sank D, Vainsencher A, Wenner J, White T C, Yin Y, Zhao J, Palmstrom C J, Martinis J M and Cleland A N 2012 Appl. Phys. Lett. 100 113510
[17] Paik H, Schuster D I, Bishop L S, Kirchmair G, Catelani G, Sears A P, Johnson B R, Reagor M J, Frunzio L, Glazman L I, Girvin S M, Devoret M H and Schoelkopf R J 2011 Phys. Rev. Lett. 107 240501
[18] Rigetti C, Gambetta J M, Poletto S, Plourde B L T, Chow J M, Córcoles A D, Smolin J A, Merkel S T, Rozen J R, Keefe G A, Rothwell M B, Ketchen M B and Steffen M 2012 Phys. Rev. B 86 100506
[19] Risté D, Leeuwen J G V, Ku H S, Lehnert K W and DiCarlo L 2012 Phys. Rev. Lett. 109 050507
[20] Novikov S, Robinson J E, Keane Z K, Suri B, Wellstood F C and Palmer B S 2013 Phys. Rev. B 88 060503
[21] Geerlings K, Leghtas Z, Pop I M, Shankar S, Frunzio L, Schoelkopf R J, Mirrahimi M and Devoret M H 2013 Phys. Rev. Lett. 110 120501
[22] Rabl P, DeMille D, Doyle J M, Lukin M D, Schoelkopf R J and Zoller P 2006 Phys. Rev. Lett. 97 033003
[23] Wallraff A, Schuster D I, Blais A, Frunzio L, Majer J, Girvin S M and Schoelkopf R J 2005 Phys. Rev. Lett. 95 060501
[24] Schreier J A, Houck A A, Koch J, Schuster D I, Johnson B R, Chow J M, Gambetta J M, Majer J, Frunzio L, Devoret M H, Girvin S M and Schoelkopf R J 2008 Phys. Rev. B 77 180502
[25] Reed M D, Johnson B R, Houck A A, DiCarlo L, Chow J M, Schuster D I, Frunzio L and Schoelkopf R J 2010 Appl. Phys. Lett. 96 203110
Related articles from Frontiers Journals
[1] Chen-Chen Guo, Wan-Bing He, Yu-Gang Ma. Collective Flows of $^{16}$O+$^{16}$O Collisions with $\alpha$-Clustering Configurations[J]. Chin. Phys. Lett., 2017, 34(9): 102101
[2] Qing-Yang Bu, Zeng-Hua Li, Hans-Josef Schulze. The Brueckner–Hartree–Fock Equation of State for Nuclear Matter and Neutron Skin[J]. Chin. Phys. Lett., 2016, 33(03): 102101
[3] MA Chun-Wang, PU Jie, WANG Shan-Shan, WEI Hui-Ling. The Symmetry Energy from the Neutron-Rich Nucleus Produced in the Intermediate-Energy 40,48Ca and 58,64Ni Projectile Fragmentation[J]. Chin. Phys. Lett., 2012, 29(6): 102101
[4] LI Zeng-Hua, **, ZHANG Da-Peng, SCHULZE Hans-Josef, ZUO Wei. Second-Order Contribution of the Incompressibility in Asymmetric Nuclear Matter[J]. Chin. Phys. Lett., 2012, 29(1): 102101
[5] ZHAO Xian-Feng. The Surface Gravitational Redshift of a Proto Neutron Star[J]. Chin. Phys. Lett., 2010, 27(9): 102101
Viewed
Full text


Abstract