Chin. Phys. Lett.  2014, Vol. 31 Issue (10): 100601    DOI: 10.1088/0256-307X/31/10/100601
GENERAL |
Accurate Evaluation of Microwave-Leakage-Induced Frequency Shifts in Fountain Clocks
FANG Fang**, LIU Kun, CHEN Wei-Liang, LIU Nian-Feng, SUO Rui, LI Tian-Chun
Time and Frequency Division, National Institute of Metrology, Beijing 100013
Cite this article:   
FANG Fang, LIU Kun, CHEN Wei-Liang et al  2014 Chin. Phys. Lett. 31 100601
Download: PDF(506KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We report theoretical calculations of the transition probability errors introduced by microwave leakage in Cs fountain clocks, which will shift the clock frequency. The results show that the transition probability errors are affected by the Ramsey pulse amplitude, the relative phase between the Ramsey field and the leakage field, and the asymmetry of the leakage fields for the upward and downward passages. This effect is quite different for the leakage fields presenting below the Ramsey cavity and above the Ramsey cavity. The leakage-field-induced frequency shifts of the NIM5 fountain clock in different cases are measured. The results are consistent with the theoretical calculations, and give an accurate evaluation of the leakage-field-induced frequency shifts, as distinguished from other microwave-power-related effects for the first time.
Published: 31 October 2014
PACS:  06.30.Ft (Time and frequency)  
  43.58.Hp (Tuning forks, frequency standards; frequency measuring and recording instruments; time standards and chronographs)  
  95.55.Sh (Auxiliary and recording instruments; clocks and frequency standards)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/10/100601       OR      https://cpl.iphy.ac.cn/Y2014/V31/I10/100601
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
FANG Fang
LIU Kun
CHEN Wei-Liang
LIU Nian-Feng
SUO Rui
LI Tian-Chun
[1] Guéna J, Abgrall M, Rovera D, Laurent P, Chupin B, Lours M, Santarelli G, Rosenbusch P, Tobar M, Li R, Gibble K, Clairon A and Bize S 2012 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59 391
[2] Szymaniec K, Park S, Marra G and Cha?upczak W 2010 Metrologia 47 363
[3] Gerginov V, Nemitz N, Griebsch D, Kazda M, Li R, Gibble K, Wynands R and Weyers S 2010 Metrologia 47 65
[4] Ovchinnikov Y and Marra G 2011 Metrologia 48 87
[5] Heavner T, Donley E, Levi F, Costanzo G, Parker T, Shirley J, Ashby N, Barlow S and Jefferts S 2014 Metrologia 51 174
[6] Levi F, Calonico D, Calosso C, Godone A, Micalizio S and Costanzo G 2014 Metrologia 51 270
[7] Niering M, Holzwarth R, Reichert J, Pokasov P, Udem T, Weitz M and H ?nsch T, Lemonde1 P, Santarelli G, Abgrall1 M, Laurent P, Salomon C and Clairon A 2000 Phys. Rev. Lett. 84 5496
[8] Marion H, Santos F, Abgrall M, Zhang S, Sortais Y, Bize S, Maksimovic I, Calonico D, Grünert J, Mandache C, Lemonde P, Santarelli G, Laurent P and Clairon A 2003 Phys. Rev. Lett. 90 150801
[9] Wolf P, Chapelet F, Bize S and Clairon A 2006 Phys. Rev. Lett. 96 060801
[10] Hachisu H, Miyagishi K, Porsev S, Derevianko A, Ovsiannikov V, Pal'chikov V, Takamoto M and Katori H 2008 Phys. Rev. Lett. 100 053001
[11] Weyers S, Schr?der R and Wynands R 2006 Proceedings of European Frequency and Time Forum (Braunschweig Germany 27–30 March 2006) p 173
[12] Shirley J, Levi F, Heavner P, Calonico D and Yu D 2006 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53 2376
[13] Santarelli G, Governatori G, Chambon D, Lours M, Rosenbusch P, Guena J, Chapelet F, Bize S, Tobar M, Laurent P, Potier T and Clairon A 2009 IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56 1319
[14] H Metcalf and P. Straten 1999 Laser Cooling and Trapping (New York: Springer) p 11
[15] Szymaniec K, Chalupczak W, Whibberley P, Lea S and Henderson D 2006 Metrologia 43 L18
[16] Liu N, Fang F, Chen W, Lin P, Wang P, Liu K, Suo R and Li T 2013 Chin. Phys. Lett. 30 010601
[17] Y Zhang, Liu K, Fang F, Liu N and Li T 2014 International Frequency Control Symposium (Taibei Taiwan 12–19 May 2014) in press
Related articles from Frontiers Journals
[1] Bing-Kun Lu, Zhen Sun, Tao Yang, Yi-Ge Lin, Qiang Wang, Ye Li, Fei Meng, Bai-Ke Lin, Tian-Chu Li, and Zhan-Jun Fang. Improved Evaluation of BBR and Collisional Frequency Shifts of NIM-Sr2 with $7.2 \times 10^{-18}$ Total Uncertainty[J]. Chin. Phys. Lett., 2022, 39(8): 100601
[2] Xiang Zhang, Xue Deng, Qi Zang, Dongdong Jiao, Jing Gao, Dan Wang, Qian Zhou, Jie Liu, Guanjun Xu, Ruifang Dong, Tao Liu, and Shougang Zhang. Coherent Optical Frequency Transfer via a 490 km Noisy Fiber Link[J]. Chin. Phys. Lett., 2022, 39(4): 100601
[3] Dong-Jie Wang, Xiang Zhang, Jie Liu, Dong-Dong Jiao, Xue Deng, Jing Gao, Qi Zang, Dan Wang, Tao Liu, Rui-Fang Dong, and Shou-Gang Zhang. Novel Polarization Control Approach to Long-Term Fiber-Optic Frequency Transfer[J]. Chin. Phys. Lett., 2020, 37(9): 100601
[4] Si-Jia Chao, Kai-Feng Cui, Shao-Mao Wang, Jian Cao, Hua-Lin Shu, Xue-Ren Huang. Observation of $^1\!S_0$$\rightarrow$$^3\!P_0$ Transition of a $^{40}$Ca$^+$-$^{27}$Al$^+$ Quantum Logic Clock[J]. Chin. Phys. Lett., 2019, 36(12): 100601
[5] Wen-Bing Li, Qiang Hao, Yuan-Bo Du, Shao-Qing Huang, Peter Yun, Ze-Huang Lu. Demonstration of a Sub-Sampling Phase Lock Loop Based Microwave Source for Reducing Dick Effect in Atomic Clocks[J]. Chin. Phys. Lett., 2019, 36(7): 100601
[6] Chao-qun Ma, Li-Fei Wu, Jiao Gu, Yan-He Chen, Guo-Qing Chen. Delay Effect on Coherent Transfer of Optical Frequency Based on a Triple-Pass Scheme[J]. Chin. Phys. Lett., 2018, 35(8): 100601
[7] Yu-Xin Zhuang, Dai-Ting Shi, Da-Wei Li, Yi-Gen Wang, Xiao-Na Zhao, Jian-Ye Zhao, Zhong Wang. Erratum: An Accurate Frequency Control Method and Atomic Clock Based on Coherent Population Beating Phenomenon [Chin. Phys. Lett. 33(2016)040601][J]. Chin. Phys. Lett., 2017, 34(10): 100601
[8] Zhao-Min Jia, Xu-Hai Yang, Bao-Qi Sun, Xiao-Ping Zhou, Bo Xiang, Xin-Yu Dou. Direct Digital Frequency Control Based on the Phase Step Change Characteristic between Signals[J]. Chin. Phys. Lett., 2017, 34(9): 100601
[9] Zhao-Yang Tai, Lu-Lu Yan, Yan-Yan Zhang, Xiao-Fei Zhang, Wen-Ge Guo, Shou-Gang Zhang, Hai-Feng Jiang. Transportable 1555-nm Ultra-Stable Laser with Sub-0.185-Hz Linewidth[J]. Chin. Phys. Lett., 2017, 34(9): 100601
[10] Jie Zhang, Ke Deng, Jun Luo, Ze-Huang Lu. Direct Laser Cooling Al$^+$ Ion Optical Clocks[J]. Chin. Phys. Lett., 2017, 34(5): 100601
[11] Hui Liu, Xi Zhang, Kun-Liang Jiang, Jin-Qi Wang, Qiang Zhu, Zhuan-Xian Xiong, Ling-Xiang He, Bao-Long Lyu. Realization of Closed-Loop Operation of Optical Lattice Clock Based on $^{171}$Yb[J]. Chin. Phys. Lett., 2017, 34(2): 100601
[12] Xue Deng, Jie Liu, Dong-Dong Jiao, Jing Gao, Qi Zang, Guan-Jun Xu, Rui-Fang Dong, Tao Liu, Shou-Gang Zhang. Coherent Transfer of Optical Frequency over 112km with Instability at the 10$^{-20}$ Level[J]. Chin. Phys. Lett., 2016, 33(11): 100601
[13] Meng-Jiao Zhang, Hui Liu, Xi Zhang, Kun-Liang Jiang, Zhuan-Xian Xiong, Bao-Long LÜ, Ling-Xiang He. Hertz-Level Clock Spectroscopy of $^{171}$Yb Atoms in a One-Dimensional Optical Lattice[J]. Chin. Phys. Lett., 2016, 33(07): 100601
[14] Kang-Kang Liu, Ru-Chen Zhao, Wei Gou, Xiao-Hu Fu, Hong-Li Liu, Shi-Qi Yin, Jian-Fang Sun, Zhen Xu, Yu-Zhu Wang. A Single Folded Beam Magneto-Optical Trap System for Neutral Mercury Atoms[J]. Chin. Phys. Lett., 2016, 33(07): 100601
[15] Yu-Xin Zhuang, Dai-Ting Shi, Da-Wei Li, Yi-Gen Wang, Xiao-Na Zhao, Jian-Ye Zhao, Zhong Wang. An Accurate Frequency Control Method and Atomic Clock Based on Coherent Population Beating Phenomenon[J]. Chin. Phys. Lett., 2016, 33(04): 100601
Viewed
Full text


Abstract