Chin. Phys. Lett.  2014, Vol. 31 Issue (10): 100501    DOI: 10.1088/0256-307X/31/10/100501
GENERAL |
Paths to Synchronization on Complex Networks with External Drive
ZOU Ying-Ying, LI Hai-Hong**
School of Science, Beijing University of Posts and Telecommunications, Beijing 100876
Cite this article:   
ZOU Ying-Ying, LI Hai-Hong 2014 Chin. Phys. Lett. 31 100501
Download: PDF(849KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the dynamics of the Kuramoto model on complex networks with part of the oscillators subjected to an external drive. It is found that the mutual synchronization is attracted to the drive when the frequency of the drive is close to the mean frequency of oscillators and, otherwise, mutual synchronization coexists with the driven synchronization. We also find that the synchronization between the mutual synchronization and the driven synchronization is dependent on the network topology when the coupling strength among oscillators is far away from the global synchronization in the absence of the drive. The transition is continuous on Erd?s-Rényi networks while it is discontinuous on scale free networks.
Published: 31 October 2014
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/10/100501       OR      https://cpl.iphy.ac.cn/Y2014/V31/I10/100501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZOU Ying-Ying
LI Hai-Hong
[1] Winfree A T 1990 The Geometry of Biological Time (New York: Springer)
[2] Strogatz S H 2003 The Emerging Science of Spontaneous Order (New York: Hyperion)
[3] Manrubia S C, Mikhailov A S and Zanette D H 2004 Emergence of Dynamic Order: Synchronization Phenomena in Complex Systems (Singapore: World Scientific)
[4] Kuramoto Y 1975 International Symposium on Mathematical Problems in Theoretical Physics Lecture Notes in Physics (New York: Springer)
[5] Kuramoto Y 1984 Chemical Oscillations, Waves and Turbulence (New York: Springer)
[6] Wu X L and Yang J Z 2014 Chin. Phys. Lett. 31 060507
[7] Zheng Z G, Hu G and Hu B 1998 Phys. Rev. Lett. 81 5318
[8] Zheng Z G, Hu B and Hu G 2000 Phys. Rev. E 62 402
[9] Zhan M, Zheng Z G, Hu G et al 2000 Phys. Rev. E 62 3552
[10] Zheng Z G, Hu G and Hu B 2001 Chin. Phys. Lett. 18 874
[11] Strogatz S H 2001 Nature 410 268
[12] Arenas A, Diaz-Guilera A, Kurths J et al 2008 Phys. Rep. 469 93
[13] Huang X, Zhan M, Li F et al 2014 J. Phys. A 47 125101
[14] Gómez-Garde?es J, Moreno Y and Arenas A 2007 Phys. Rev. Lett. 98 034101
[15] Gómez-Garde?es J, Gómez S, Arenas A and Moreno Y 2011 Phys. Rev. Lett. 106 128701
[16] Peron T K D M and A Rodrigues F 2012 Phys. Rev. E 86 016102
[17] Zhang X Y, Hu X, Kurths J and Liu Z H 2013 Phys. Rev. E 88 010802
[18] Gómez-Garde?es J and Moreno Y 2006 Phys. Rev. E 73 056124
Related articles from Frontiers Journals
[1] Rui Zhang, Fan Ding, Xujin Yuan, and Mingji Chen. Influence of Spatial Correlation Function on Characteristics of Wideband Electromagnetic Wave Absorbers with Chaotic Surface[J]. Chin. Phys. Lett., 2022, 39(9): 100501
[2] Peng Gao, Zeyu Wu, Zhan-Ying Yang, and Wen-Li Yang. Reverse Rotation of Ring-Shaped Perturbation on Homogeneous Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2021, 38(9): 100501
[3] Jia-Chen Zhang , Wei-Kai Ren , and Ning-De Jin. Rescaled Range Permutation Entropy: A Method for Quantifying the Dynamical Complexity of Extreme Volatility in Chaotic Time Series[J]. Chin. Phys. Lett., 2020, 37(9): 100501
[4] Qianqian Wu, Xingyi Liu, Tengfei Jiao, Surajit Sen, and Decai Huang. Head-on Collision of Solitary Waves Described by the Toda Lattice Model in Granular Chain[J]. Chin. Phys. Lett., 2020, 37(7): 100501
[5] Yun-Cheng Liao, Bin Liu, Juan Liu, Jia Chen. Asymmetric and Single-Side Splitting of Dissipative Solitons in Complex Ginzburg–Landau Equations with an Asymmetric Wedge-Shaped Potential[J]. Chin. Phys. Lett., 2019, 36(1): 100501
[6] Ying Du, Jiaqi Liu, Shihui Fu. Information Transmitting and Cognition with a Spiking Neural Network Model[J]. Chin. Phys. Lett., 2018, 35(9): 100501
[7] Quan-Bao Ji, Zhuo-Qin Yang, Fang Han. Bifurcation Analysis and Transition Mechanism in a Modified Model of Ca$^{2+}$ Oscillations[J]. Chin. Phys. Lett., 2017, 34(8): 100501
[8] Ya-Tong Zhou, Yu Fan, Zi-Yi Chen, Jian-Cheng Sun. Multimodality Prediction of Chaotic Time Series with Sparse Hard-Cut EM Learning of the Gaussian Process Mixture Model[J]. Chin. Phys. Lett., 2017, 34(5): 100501
[9] Jing-Hui Li. Effect of Network Size on Collective Motion of Mean Field for a Globally Coupled Map with Disorder[J]. Chin. Phys. Lett., 2016, 33(12): 100501
[10] Jian-Cheng Sun. Complex Networks from Chaotic Time Series on Riemannian Manifold[J]. Chin. Phys. Lett., 2016, 33(10): 100501
[11] HUANG Feng, CHEN Han-Shuang, SHEN Chuan-Sheng. Phase Transitions of Majority-Vote Model on Modular Networks[J]. Chin. Phys. Lett., 2015, 32(11): 100501
[12] WANG Yu-Xin, ZHAI Ji-Quan, XU Wei-Wei, SUN Guo-Zhu, WU Pei-Heng. A New Quantity to Characterize Stochastic Resonance[J]. Chin. Phys. Lett., 2015, 32(09): 100501
[13] JI Quan-Bao, ZHOU Yi, YANG Zhuo-Qin, MENG Xiang-Ying. Bifurcation Scenarios of a Modified Mathematical Model for Intracellular Ca2+ Oscillations[J]. Chin. Phys. Lett., 2015, 32(5): 100501
[14] HAN Fang, WANG Zhi-Jie, FAN Hong, GONG Tao. Robust Synchronization in an E/I Network with Medium Synaptic Delay and High Level of Heterogeneity[J]. Chin. Phys. Lett., 2015, 32(4): 100501
[15] ZHAI Ji-Quan, LI Yong-Chao, SHI Jian-Xin, ZHOU Yu, LI Xiao-Hu, XU Wei-Wei, SUN Guo-Zhu, WU Pei-Heng. Dependence of Switching Current Distribution of a Current-Biased Josephson Junction on Microwave Frequency[J]. Chin. Phys. Lett., 2015, 32(4): 100501
Viewed
Full text


Abstract