Chin. Phys. Lett.  2014, Vol. 31 Issue (1): 018101    DOI: 10.1088/0256-307X/31/1/018101
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Near-Field Enhancement and Absorption Properties of Metal-Dielectric-Metal Microcavities in the Mid-Infrared Range
HENG Hang1,2**, YANG Li1, YE Yong-Hong1
1Department of Physics, Nanjing Normal University, Nanjing 210097
2Center for Analysis and Testing, Nanjing Normal University, Nanjing 210097
Cite this article:   
HENG Hang, YANG Li, YE Yong-Hong 2014 Chin. Phys. Lett. 31 018101
Download: PDF(842KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An important property of optical metamaterials is the ability to concentrate light into extremely tiny volumes, so as to enhance their interaction with quantum objects. In this work, we numerically study the near-field enhancement and absorption properties inside the cylindrical microcavities formed by a Au-GaAs-Au sandwiched structure. At normal incidence, the obtained reflection spectra show that the resonance wavelength of microcavities operates in the range of 5–5.8 μm. We also calculate the contrast C (C=1?Rmin), which can be increased to 97% by optimizing the structure's geometry parameters. Moreover, we demonstrate that the multilayer structure with sub-wavelength electromagnetic confinement allows 103–104-fold enhancement of the electromagnetic energy density inside the cavities, which contains the most energy of the incident electromagnetic radiation and has a higher quality factor Q, indicating a narrower linewidth for surface enhanced molecular absorption spectroscopy and the tracking of characteristic molecular vibrational modes in the mid-infrared region. The structure is insensitive to the polarization of the incident wave due to the symmetry of the cylindrical microcavities. The unique properties of the metal-dielectric-metal metamaterials will have potential applications in new plasmonic detectors, bio-sensing and solar cells, etc.
Received: 07 August 2013      Published: 28 January 2014
PACS:  81.05.Xj (Metamaterials for chiral, bianisotropic and other complex media)  
  42.55.Sa (Microcavity and microdisk lasers)  
  73.40.Sx (Metal-semiconductor-metal structures)  
  25.40.Ny (Resonance reactions)  
  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/1/018101       OR      https://cpl.iphy.ac.cn/Y2014/V31/I1/018101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HENG Hang
YANG Li
YE Yong-Hong
[1] Rai V N, Srivastava A K, Mukherjee C and Deb S K 2012 Appl. Opt. 51 2606
[2] Du C L, Du C J, You Y M, Zhu Y, Jin S L, He C J and Shi D N 2011 Appl. Opt. 50 4922
[3] Sun M, Tian J, Li Z Y, Cheng B Y, Zhang D Z, Jin A Z and Yang H F 2006 Chin. Phys. Lett. 23 486
[4] Ebbesen T W, Lezec H J, Ghaemi H F, Thio T and Wolff P A 1998 Nature 391 667
[5] Thio T, Pellerin K M and Linke R A 2001 Opt. Lett. 26 1972
[6] Xing Q R, Li S X, Zhang W L, Lang L Y, Mao F L, Xu S X, Chai L and Wang Q Y 2005 Chin. Phys. Lett. 22 1821
[7] Haes A J, Zou S L, Schatz G C and Van Duyne R P 2004 J. Phys. Chem. B 108 109
[8] McFarland A D and Van Duyne R P 2003 Nano Lett. 3 1057
[9] Shelby R A, Smith D R and Schultz S 2001 Science 292 77
[10] Dolling G, Enkrich C and Wegener M 2006 Opt. Lett. 31 1800
[11] Dolling G, Wegener M, Soukoulis C M and Linden S 2007 Opt. Lett. 32 53
[12] Lee H, Xiong Y, Fang N, Srituravanich W, Durant S, Ambati M, Sun C and Zhang X 2005 New J. Phys. 7 255
[13] Taubner T, Korobkin D, Urzhumov Y, Shvets G, Hillenbrand R 2006 Science 313 1595
[14] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
[15] Liu H and Lalanne P 2008 Nature 452 728
[16] Hibbins A P and Sambles J R 2004 Phys. Rev. Lett. 92 147401
[17] Farahani J N, Eisler H J, Pohl D W, Pavius M, Fluckiger P, Gasser P and Hecht B 2007 Nanotechnology 18 125506
[18] Curto A G, Volpe G, Taminiau T H, Kreuzer M P, Quidant R, Hulst N V 2010 Science 329 930
[19] Fevillet-Palma C, Todorow Y, Vasanelli A and Sirtori C 2013 Sci. Rep. 3 1361
[20] Fevillet-Palma C, Todorov Y, Steed R, Vasanelli A, Biasiol G, Sorba L and Sirtori C 2012 Opt. Express 20 29121
[21] Todorov Y, Tosetto L, Teissier J, Andrews A M, Klang P, Colombelli R, Sagnes I, Strasser G and Sirtori C 2010 Opt. Express 18 13886
Related articles from Frontiers Journals
[1] Yan-Ning Liu, Xiao-Long Weng, Peng Zhang, Wen-Xin Li, Yu Gong, Li Zhang, Tian-Cheng Han, Pei-Heng Zhou, and Long-Jiang Deng. Ultra-Broadband Infrared Metamaterial Absorber for Passive Radiative Cooling[J]. Chin. Phys. Lett., 2021, 38(3): 018101
[2] Ren-Xia Ning, Zheng Jiao, Jie Bao. Narrow and Dual-Band Tunable Absorption of a Composite Structure with a Graphene Metasurface[J]. Chin. Phys. Lett., 2017, 34(10): 018101
[3] Hong-Wei Guo, Shun-Cai Zhao, Xiao-Jing Wei, Xin Li. Negative Refraction Index Manipulated by a Displaced Squeezed Fock State in the Mesoscopic Dissipative Left-Handed Transmission Line[J]. Chin. Phys. Lett., 2017, 34(3): 018101
[4] Hang Heng, Rong Wang. Extreme Light Concentration and High Absorption of the Double Cylindrical Microcavities[J]. Chin. Phys. Lett., 2016, 33(08): 018101
[5] Wan-Xia Huang, Guo-Ren Zhao, Juan-Juan Guo, Mao-Sheng Wang, Jian-Ping Shi. Nearly Perfect Absorbers Operating Associated with Fano Resonance in the Infrared Range[J]. Chin. Phys. Lett., 2016, 33(08): 018101
[6] Run Hu, Jin-Yan Hu, Rui-Kang Wu, Bin Xie, Xing-Jian Yu, Xiao-Bing Luo. Examination of the Thermal Cloaking Effectiveness with Layered Engineering Materials[J]. Chin. Phys. Lett., 2016, 33(04): 018101
[7] LI Chun-Lai, GUO Jie, ZHANG Peng, YU Quan-Qiang, MA Wei-Tao, MIAO Xi-Gen, ZHAO Zhi-Ya, LUAN Lin. Planar Magnetic Metamaterial Slabs for Magnetic Resonance Imaging Applications[J]. Chin. Phys. Lett., 2014, 31(07): 018101
[8] LIAO Zhong-Wei, HUANG Ying-Zhou, WANG Xiao-Yong, CHAU Irene Yeung-Yeung, WANG Shu-Xia, WEN Wei-Jia. Near-Infrared Properties of Hybridized Plasmonic Rectangular Split Nanorings[J]. Chin. Phys. Lett., 2014, 31(06): 018101
[9] HENG Hang, YANG Li. Multi-Band Absorption Properties and Near-Field Enhancement in Mid-Infrared Based on the Interference Theory[J]. Chin. Phys. Lett., 2014, 31(05): 018101
[10] HOU Zhi-Ling**, KONG Ling-Bao, JIN Hai-Bo, CAO Mao-Sheng, LI Xiao, QI Xin. The Comprehensive Retrieval Method of Electromagnetic Parameters Using the Scattering Parameters of Metamaterials for Two Choices of Time-Dependent Factors[J]. Chin. Phys. Lett., 2012, 29(1): 018101
[11] HE Xiao-Yang, CHEN Qi, LI Lin-Cui, YANG Chun**, LI Biao, ZHOU Bang-Hua, TANG Chuan-Xiang . Nonresonant Metamaterials with an Ultra-High Permittivity[J]. Chin. Phys. Lett., 2011, 28(5): 018101
Viewed
Full text


Abstract