CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Near-Field Enhancement and Absorption Properties of Metal-Dielectric-Metal Microcavities in the Mid-Infrared Range |
HENG Hang1,2**, YANG Li1, YE Yong-Hong1 |
1Department of Physics, Nanjing Normal University, Nanjing 210097 2Center for Analysis and Testing, Nanjing Normal University, Nanjing 210097
|
|
Cite this article: |
HENG Hang, YANG Li, YE Yong-Hong 2014 Chin. Phys. Lett. 31 018101 |
|
|
Abstract An important property of optical metamaterials is the ability to concentrate light into extremely tiny volumes, so as to enhance their interaction with quantum objects. In this work, we numerically study the near-field enhancement and absorption properties inside the cylindrical microcavities formed by a Au-GaAs-Au sandwiched structure. At normal incidence, the obtained reflection spectra show that the resonance wavelength of microcavities operates in the range of 5–5.8 μm. We also calculate the contrast C (C=1?Rmin), which can be increased to 97% by optimizing the structure's geometry parameters. Moreover, we demonstrate that the multilayer structure with sub-wavelength electromagnetic confinement allows 103–104-fold enhancement of the electromagnetic energy density inside the cavities, which contains the most energy of the incident electromagnetic radiation and has a higher quality factor Q, indicating a narrower linewidth for surface enhanced molecular absorption spectroscopy and the tracking of characteristic molecular vibrational modes in the mid-infrared region. The structure is insensitive to the polarization of the incident wave due to the symmetry of the cylindrical microcavities. The unique properties of the metal-dielectric-metal metamaterials will have potential applications in new plasmonic detectors, bio-sensing and solar cells, etc.
|
|
Received: 07 August 2013
Published: 28 January 2014
|
|
PACS: |
81.05.Xj
|
(Metamaterials for chiral, bianisotropic and other complex media)
|
|
42.55.Sa
|
(Microcavity and microdisk lasers)
|
|
73.40.Sx
|
(Metal-semiconductor-metal structures)
|
|
25.40.Ny
|
(Resonance reactions)
|
|
78.67.Pt
|
(Multilayers; superlattices; photonic structures; metamaterials)
|
|
|
|
|
[1] Rai V N, Srivastava A K, Mukherjee C and Deb S K 2012 Appl. Opt. 51 2606 [2] Du C L, Du C J, You Y M, Zhu Y, Jin S L, He C J and Shi D N 2011 Appl. Opt. 50 4922 [3] Sun M, Tian J, Li Z Y, Cheng B Y, Zhang D Z, Jin A Z and Yang H F 2006 Chin. Phys. Lett. 23 486 [4] Ebbesen T W, Lezec H J, Ghaemi H F, Thio T and Wolff P A 1998 Nature 391 667 [5] Thio T, Pellerin K M and Linke R A 2001 Opt. Lett. 26 1972 [6] Xing Q R, Li S X, Zhang W L, Lang L Y, Mao F L, Xu S X, Chai L and Wang Q Y 2005 Chin. Phys. Lett. 22 1821 [7] Haes A J, Zou S L, Schatz G C and Van Duyne R P 2004 J. Phys. Chem. B 108 109 [8] McFarland A D and Van Duyne R P 2003 Nano Lett. 3 1057 [9] Shelby R A, Smith D R and Schultz S 2001 Science 292 77 [10] Dolling G, Enkrich C and Wegener M 2006 Opt. Lett. 31 1800 [11] Dolling G, Wegener M, Soukoulis C M and Linden S 2007 Opt. Lett. 32 53 [12] Lee H, Xiong Y, Fang N, Srituravanich W, Durant S, Ambati M, Sun C and Zhang X 2005 New J. Phys. 7 255 [13] Taubner T, Korobkin D, Urzhumov Y, Shvets G, Hillenbrand R 2006 Science 313 1595 [14] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824 [15] Liu H and Lalanne P 2008 Nature 452 728 [16] Hibbins A P and Sambles J R 2004 Phys. Rev. Lett. 92 147401 [17] Farahani J N, Eisler H J, Pohl D W, Pavius M, Fluckiger P, Gasser P and Hecht B 2007 Nanotechnology 18 125506 [18] Curto A G, Volpe G, Taminiau T H, Kreuzer M P, Quidant R, Hulst N V 2010 Science 329 930 [19] Fevillet-Palma C, Todorow Y, Vasanelli A and Sirtori C 2013 Sci. Rep. 3 1361 [20] Fevillet-Palma C, Todorov Y, Steed R, Vasanelli A, Biasiol G, Sorba L and Sirtori C 2012 Opt. Express 20 29121 [21] Todorov Y, Tosetto L, Teissier J, Andrews A M, Klang P, Colombelli R, Sagnes I, Strasser G and Sirtori C 2010 Opt. Express 18 13886 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|