Chin. Phys. Lett.  2014, Vol. 31 Issue (1): 017502    DOI: 10.1088/0256-307X/31/1/017502
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Spin-Wave Modes in Exchange-Coupled FePt/FeNi Bilayer Films
LI Shu-Fa1**, HE Pan2, CHENG Chu-Yuan1, ZHOU Shi-Ming2**, LAI Tian-Shu1**
1State-Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275
2Department of Physics, Tongji University, Shanghai 200092
Cite this article:   
LI Shu-Fa, HE Pan, CHENG Chu-Yuan et al  2014 Chin. Phys. Lett. 31 017502
Download: PDF(672KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A simple magnetic modulation structure of the exchange-coupling FePt/FeNi bilayer film is fabricated and studied for its magnetization dynamics using time-resolved magneto-optical polar Kerr spectroscopy. It is found that two spin-wave modes can be excited. One is fixed at 3.2 GHz in frequency for any external field and may serve as a frequency-stabilized spin-wave filter, while the other is external field dependent. In contrast, only the external field-dependent mode is excited in single-layer FeNi, supporting the localized origin of the mode at 3.2 GHz, which is confined to a thin exchange-coupling region. The other external field-dependent mode in frequency is attributed to the Kittel mode.
Received: 22 August 2013      Published: 28 January 2014
PACS:  75.30.Ds (Spin waves)  
  78.47.-p (Spectroscopy of solid state dynamics)  
  75.50.Bb (Fe and its alloys)  
  75.30.Et (Exchange and superexchange interactions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/1/017502       OR      https://cpl.iphy.ac.cn/Y2014/V31/I1/017502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Shu-Fa
HE Pan
CHENG Chu-Yuan
ZHOU Shi-Ming
LAI Tian-Shu
[1] Kostylev M P, Serga A A, Schneider T, Leven B and Hillebrands B 2005 Appl. Phys. Lett. 87 153501
[2] Schneider T, Serga A A, Leven B, Hillebrands B, Stamps R L and Kostylev M P 2008 Appl. Phys. Lett. 92 022505
[3] Demidov V E, Demokritov S O, Rott K, Krzysteczko P and Reiss G 2008 Appl. Phys. Lett. 92 232503
[4] Demidov V E, Jersch J, Demokritov S O, Rott K, Krzysteczko P and Reiss G 2009 Phys. Rev. B 79 054417
[5] Kim S K, Lee K S and Han D S 2009 Appl. Phys. Lett. 95 082507
[6] Bai L H, Kohda M and Nitta J 2011 Appl. Phys. Lett. 98 172508
[7] Lenk B, Ulrichs H, Garbs F and Münzenberg M 2011 Phys. Rep. 507 107
[8] Ulrichs H, Lenk B and Münzenberg M 2010 Appl. Phys. Lett. 97 092506
[9] Neusser S, Botters B, Becherer M, Schmitt-Landsiedel D and Grundler K 2008 Appl. Phys. Lett. 93 122501
[10] Gubbiotti G, Conti M, Garlotti G, Candeloro P, Fabrizio E D, Guslienko K Y, Andre A, Bayer C and Slavin A N 2004 J. Phys.: Condens. Matter 16 7709
[11] Mendach S, Podbielski J, Topp J, Hansen W and Heitmann D 2008 Appl. Phys. Lett. 93 262501
[12] Jiang W, Wang W, Zhang F, Jiang Y and Guo A B 2008 Phys. Status Solidi B 245 1196
[13] Monteiro P M S and Schmool D S 2010 Phys. Rev. B 81 214439
[14] Zhang Z Z, Cui B Y, Wang G Z, Ma B, Jin Q Y and Liu Y W 2010 Appl. Phys. Lett. 97 172508
[15] Weller D, Moser A, Folks L, Best M E, Lee W, Toney M F, Chwickert M S, Thiele J U and Doerner M F 2000 IEEE Trans. Magn. 36 10
[16] Liu X D, Xu Z, Gao R X, Hu H N, Chen Z F, Wang Z X, Du J, Zhou S M and Lai T S 2008 Appl. Phys. Lett. 92 232501
[17] Hellwig O, Kortright J B, Takano K and Fullerton Eric E 2000 Phys. Rev. B 62 11694
[18] Kruglyak V V, Barman A, Hicken R J, Childress J R and Katine J A 2005 Phys. Rev. B 71 220409
[19] Kalinikos B A and Slavin A N 1986 J. Phys. C 19 7013
[20] Talbayev D, Zhao H, Lüpke G, Venimadhav A and Li Q 2006 Phys. Rev. B 73 014417
[21] Liu Z G, Giesen F, Zhu X B, Sydora R D and Freeman M R 2007 Phys. Rev. Lett. 98 087201
Related articles from Frontiers Journals
[1] Kangkang Li. Topological Magnons in Kitaev Magnets with Finite Dzyaloshinskii–Moriya Interaction at High Field[J]. Chin. Phys. Lett., 2023, 40(2): 017502
[2] Yayuan Qin, Yao Shen, Yiqing Hao, Hongliang Wo, Shoudong Shen, Russell A. Ewings, Yang Zhao, Leland W. Harriger, Jeffrey W. Lynn, and Jun Zhao. Erratum: Frustrated Magnetic Interactions and Quenched Spin Fluctuations in CrAs [Chin. Phys. Lett. 39, 127501 (2022)][J]. Chin. Phys. Lett., 2023, 40(2): 017502
[3] Yayuan Qin, Yao Shen, Yiqing Hao, Hongliang Wo, Shoudong Shen, Russell A. Ewings, Yang Zhao, Leland W. Harriger, Jeffrey W. Lynn, and Jun Zhao. Frustrated Magnetic Interactions and Quenched Spin Fluctuations in CrAs[J]. Chin. Phys. Lett., 2022, 39(12): 017502
[4] Xiaoxue Zhao, Kejing Ran, Jinghui Wang, Song Bao, Yanyan Shangguan, Zhentao Huang, Junbo Liao, Bo Zhang, Shufan Cheng, Hao Xu, Wei Wang, Zhao-Yang Dong, Siqin Meng, Zhilun Lu, Shin-ichiro Yano, Shun-Li Yu, Jian-Xin Li, and Jinsheng Wen. Neutron Spectroscopy Evidence for a Possible Magnetic-Field-Induced Gapless Quantum-Spin-Liquid Phase in a Kitaev Material $\alpha$-RuCl$_3$[J]. Chin. Phys. Lett., 2022, 39(5): 017502
[5] Kejing Ran, Jinghui Wang, Song Bao, Zhengwei Cai, Yanyan Shangguan, Zhen Ma, Wei Wang, Zhao-Yang Dong, P. Čermák, A. Schneidewind, Siqin Meng, Zhilun Lu, Shun-Li Yu, Jian-Xin Li, and Jinsheng Wen. Evidence for Magnetic Fractional Excitations in a Kitaev Quantum-Spin-Liquid Candidate $\alpha$-RuCl$_3$[J]. Chin. Phys. Lett., 2022, 39(2): 017502
[6] Di Wang, Jihai Yu, Feng Tang, Yuan Li, and Xiangang Wan. Determination of the Range of Magnetic Interactions from the Relations between Magnon Eigenvalues at High-Symmetry $k$ Points[J]. Chin. Phys. Lett., 2021, 38(11): 017502
[7] Qiuyang Li, Suqin Xiong, Lina Chen, Kaiyuan Zhou, Rongxin Xiang, Haotian Li, Zhenyu Gao, Ronghua Liu, and Youwei Du. Spin-Wave Dynamics in an Artificial Kagome Spin Ice[J]. Chin. Phys. Lett., 2021, 38(4): 017502
[8] Mao Yang, Xianyang Lu, Bo Liu, Xuezhong Ruan, Junran Zhang, Xiaoqian Zhang, Dawei Huang, Jing Wu, Jun Du, Bo Liu, Hao Meng, Liang He, and Yongbing Xu. Tuning of the Magnetic Damping Parameter by Varying Cr Composition in Fe$_{1-x}$Cr$_x$ Alloy[J]. Chin. Phys. Lett., 2020, 37(10): 017502
[9] Yizhe Sun, Moorthi Kanagaraj, Qinwu Gao, Yafei Zhao, Jiai Ning, Kunpeng Zhang, Xianyang Lu, Liang He, and Yongbing Xu. Site Preference of Se and Te in Bi$_2$Se$_{3-x}$Te$_x$ Thin Films[J]. Chin. Phys. Lett., 2020, 37(7): 017502
[10] Kang-Kang Li, Jiang-Ping Hu. Weyl and Nodal Ring Magnons in Three-Dimensional Honeycomb Lattices[J]. Chin. Phys. Lett., 2017, 34(7): 017502
[11] Zhong-Chao Wei, Hai-Jun Liao, Jing Chen, Hai-Dong Xie, Zhi-Yuan Liu, Zhi-Yuan Xie, Wei Li, B. Normand, Tao Xiang. Self-Consistent Spin-Wave Analysis of the 1/3 Magnetization Plateau in the Kagome Antiferromagnet[J]. Chin. Phys. Lett., 2016, 33(07): 017502
[12] DONG Zhan-Hai. 120° Ordered Phase of Triangular Lattice Antiferromagnetic Heisenberg Model with Long Range Couplings[J]. Chin. Phys. Lett., 2009, 26(10): 017502
[13] LU Feng, SONG Yun, CHEN Dong-Meng, ZOU Liang-Jian. Orbital Order and Orbital Excitations in Degenerate Itinerant Electron Systems[J]. Chin. Phys. Lett., 2009, 26(9): 017502
[14] WU Bao-Jian, GAO Xiang. Magnetostatic-Wave-Based Magneto-Optic Pulse Compression by Control of Phase Mismatching[J]. Chin. Phys. Lett., 2008, 25(11): 017502
[15] WU Bao-Jian, QIU Kun. Magneto-Optic Coupling Theory for Guided Optical Waves and Magnetostatic Waves Using an Arbitrarily Tilted Bias Magnetic Field[J]. Chin. Phys. Lett., 2005, 22(9): 017502
Viewed
Full text


Abstract