Chin. Phys. Lett.  2014, Vol. 31 Issue (1): 016501    DOI: 10.1088/0256-307X/31/1/016501
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Thermal Conductivity of the Partly Covered Inner Tube in a Double-Walled Carbon Nanotube with Varied Coverage Ratios
PAN Rui-Qin1, XU Zi-Jian2**, DAI Cui-Xia1
1College of Science, Shanghai Institute of Technology, Shanghai 200235
2Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204
Cite this article:   
PAN Rui-Qin, XU Zi-Jian, DAI Cui-Xia 2014 Chin. Phys. Lett. 31 016501
Download: PDF(480KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present a study of the thermal conductivity of a partly covered inner tube in a double-walled carbon nanotube with varied covering ratios using a non-equilibrium molecular dynamics method. Our results show that the thermal conductivity of the inner tube changes non-linearly and non-monotonically with the increasing coverage ratio, forming a V-shaped curve. Minimal conductivity occurs at the coverage ratio of 58%, with its value being 69% of the maximal conductivity, which appears in the full coverage case. We analyze three mutually competitive mechanisms that result in this thermal conductivity behavior with the assistance of a phonon spectrum calculation.
Received: 18 September 2013      Published: 28 January 2014
PACS:  65.80.-g (Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)  
  61.46.-w (Structure of nanoscale materials)  
  61.48.-c (Structure of fullerenes and related hollow and planar molecular structures)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/1/016501       OR      https://cpl.iphy.ac.cn/Y2014/V31/I1/016501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
PAN Rui-Qin
XU Zi-Jian
DAI Cui-Xia
[1] Osman M A and Srivastava D 2001 Nanotechnology 12 21
[2] Cumings J and Zettl A 2000 Science 289 602
[3] Cumings J, Collins P G and Zettl A 2000 Nature 406 586
[4] Zheng Q and Jiang Q 2002 Phys. Rev. Lett. 88 045503
Zheng Q, Liu J Z and Jiang Q 2002 Phys. Rev. B 65 245409
[5] Charlier A, McRae E, Heyd R, Charlier M F and Moretti D 1999 Carbon 37 1779
[6] Shen C, Brozena A H and Wang Y H 2011 Nanoscale 3 503
[7] Cao A Y, Ci L J, Li D J, Wei B Q, Xu C L, Liang J and Wu D H 2001 Chem. Phys. Lett. 335 150
[8] Bradley K, Cumings J, Star A, Gabriel J P and Gruner G 2003 Nano Lett. 3 929
[9] Liu C, Fan Y Y, Liu M, Cong H T, Cheng H M and Dresselhans M S 1999 Science 286 1127
[10] Lozovik Yu E, Minogin A V and Popov A M 2003 Phys. Lett. A 313 112
[11] Hu G J and Cao B Y 2012 Mol. Simul. 38 823
[12] Pan R Q, Xu Z J, Zhu Z Y and Wang Z X 2007 Nanotechnology 18 285704
[13] Müller-Plathe F 1997 J. Chem. Phys. 106 6082
[14] Kondo N, Yamamoto T and Watanabe K 2006 E-J. Surf. Sci. Nanotech. 4 239
[15] Pan R Q, Xu Z J and Zhu Z Y 2007 Chin. Phys. Lett. 24 1321
[16] Pan R Q 2011 Chin. Phys. Lett. 28 066104
[17] Sokhan V P, Nicholson D and Quirke N 2000 J. Chem. Phys. 113 2007
[18] Noya E G, Srivastava D, Chernozatonskii L A and Menon M 2004 Phys. Rev. B 70 115416
[19] Wang J Y, Peng J C, Peng C, Peng Z H, Ou Y and Shi X Y 2004 J. Funct. Mater. 35 2884
[20] Ye X, Sun D Y and Gong X G 2005 Phys. Rev. B 72 035454
[21] Zhang G and Li B W 2005 J. Chem. Phys. 123 114714
Related articles from Frontiers Journals
[1] Gui-ping Zhu , Chang-wei Zhao , Xi-wen Wang , and Jian Wang. Tuning Thermal Conductivity in Si Nanowires with Patterned Structures[J]. Chin. Phys. Lett., 2021, 38(2): 016501
[2] Vali Dalouji, Dariush Mehrparvar, Shahram Solaymani, Sahar Rezaee. Effect of Nickel Distributions Embedded in Amorphous Carbon Films on Transport Properties[J]. Chin. Phys. Lett., 2018, 35(2): 016501
[3] Deyan Sun, Cheng Shang, Zhipan Liu, Xingao Gong. Intrinsic Features of an Ideal Glass[J]. Chin. Phys. Lett., 2017, 34(2): 016501
[4] LU Xing, ZHONG Wei-Rong. Low Thermal Conductivity of Paperclip-Shaped Graphene Superlattice Nanoribbons[J]. Chin. Phys. Lett., 2015, 32(09): 016501
[5] WEI Liang, XU Zhi-Cheng, ZHENG Dong-Qin, ZHANG Wei, ZHONG Wei-Rong. Heat Transport in Double-Bond Linear Chains of Fullerenes[J]. Chin. Phys. Lett., 2015, 32(07): 016501
[6] CHEN Xiao-Ming, HUO Kai-Tuo, LIU Peng. In Situ X-Ray Diffraction Study on Surface Melting of Bi Nanoparticles Embedded in a SiO2 Matrix[J]. Chin. Phys. Lett., 2014, 31(1): 016501
[7] PENG Chun, ZHANG Hong, CHENG Xin-Lu. Path Integral Monte Carlo Study of X@C50 [X=H2, He, Ne, Ar][J]. Chin. Phys. Lett., 2013, 30(11): 016501
[8] LÜ, Yong-Jun**. Enhanced Surface Premelting of Ni90Si10 Nanoparticles[J]. Chin. Phys. Lett., 2012, 29(4): 016501
[9] ZHOU Guo-Rui, FENG Guo-Ying, ZHANG Yi, MA Zi, WANG Jian-Jun. A Temperature Sensor Based on a Symmetrical Metal-Cladding Optical Waveguide[J]. Chin. Phys. Lett., 2012, 29(2): 016501
[10] WANG Sheng-Jie, ZHANG Chun-Lai, WANG Zhi-Guo. Melting of Single-Walled Silicon Carbide Nanotubes: Density Functional Molecular Dynamics Simulation[J]. Chin. Phys. Lett., 2010, 27(10): 016501
[11] HU Guo-Jie, CAO Bing-Yang, LI Yuan-Wei. Thermal Conduction in a Single Polyethylene Chain Using Molecular Dynamics Simulations[J]. Chin. Phys. Lett., 2014, 31(08): 016501
Viewed
Full text


Abstract