Chin. Phys. Lett.  2014, Vol. 31 Issue (1): 010501    DOI: 10.1088/0256-307X/31/1/010501
GENERAL |
A Comparative Study on the Self Diffusion of N-Octadecane with Crystal and Amorphous Structure by Molecular Dynamics Simulation
RAO Zhong-Hao, LIU Xin-Jian, ZHANG Rui-Kai, LI Xiang, WEI Chang-Xing, WANG Hao-Dong, LI Yi-Min**
School of Electric Power Engineering, China University of Mining and Technology, Xuzhou 221116
Cite this article:   
RAO Zhong-Hao, LIU Xin-Jian, ZHANG Rui-Kai et al  2014 Chin. Phys. Lett. 31 010501
Download: PDF(791KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The straight chain n-alkanes and their mixture, which can be used as phase change materials (PCM) for thermal energy storage, have attracted much attention in recent years. We employ the molecular dynamics (MD) simulation to investigate their thermophysical properties, including self diffusion and melting of n-octadecane with crystal and amorphous structures. Our results show that, although the initial and melted structures of n-octadecane with crystal and amorphous are different, the melting behaviors of n-octadecane judged by the self diffusion behavior are consistent. The MD simulation indicates that both the crystal and amorphous structures are effective for the property investigation of n-octadecane and the simulated conclusion can be used as reference for modeling the alkanes-based PCM system.
Received: 09 October 2013      Published: 28 January 2014
PACS:  05.70.-a (Thermodynamics)  
  02.70.Ns (Molecular dynamics and particle methods)  
  05.70.Fh (Phase transitions: general studies)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/1/010501       OR      https://cpl.iphy.ac.cn/Y2014/V31/I1/010501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
RAO Zhong-Hao
LIU Xin-Jian
ZHANG Rui-Kai
LI Xiang
WEI Chang-Xing
WANG Hao-Dong
LI Yi-Min
[1] Delgado M, Lázaro A, Mazo J and Zalba B 2012 Renewable Sustainable Energy Rev. 16 253
[2] Zhao C Y and Zhang G H 2011 Renewable Sustainable Energy Rev. 15 3813
[3] Farid M M, Khudhair A M, Razack S A K and Al-Hallaj S 2004 Energy Convers. Manage. 45 1597
[4] Rao Z H, Wang S F and Zhang Z G 2012 Renewable Sustainable Energy Rev. 16 3136
[5] Oró E, de Gracia A, Castell A, Farid M M and Cabeza L F 2012 Appl. Energy 99 513
[6] Rathod M K and Banerjee J 2013 Renewable Sustainable Energy Rev. 18 246
[7] He B and Setterwall F 2002 Energy Convers. Manage. 43 1709
[8] Rao Z H, Wang S F and Peng F F 2012 Appl. Energy 100 303
[9] Rao Z H, Wang S F, Peng F F, Zhang W and Zhang Y L 2012 Energy 44 805
[10] Rao Z H, Wang S F, Wu M C, Zhang Y L and Li F H 2012 Energy Convers. Manage. 64 152
[11] Rao Z H, Wang S F and Zhang Y L 2012 Phase Transit. 85 400
[12] Rao Z, Wang S and Peng F 2013 Int. J. Heat Mass Transfer 66 575
[13] Rao Z H, Wang S F, Zhang Y L, Peng F F and Cai S H 2013 Acta Phys. Sin. 56 793 (in Chinese)
[14] Rao Z H, Wang S F and Peng F F 2013 Int. J. Heat Mass Transfer 64 581
[15] Yin K L, Xu D J, Xia Q, Ye Y J, Wu G Y and Chen C L 2004 Acta Phys. Chim. Sin. 20 302
[16] Yang J S, Yang C L, Wang M S, Chen B D and Ma X G 2011 Phys. Chem. Chem. Phys. 13 15476
[17] Xiao H, Zhen Z, Sun H, Cao X, Li Z, Song X, Cui X and Liu X 2010 Sci. Chin. Chem. 53 945
[18] Yang H, Liu Y, Zhang H and Li Z S 2006 Polymer 47 7607
[19] Shimizu T and Yamamoto T 2000 J. Chem. Phys. 113 3351
[20] Wentzel N and Milner S T 2010 J. Chem. Phys. 132 044901
[21] Marbeuf A and Brown R 2006 J. Chem. Phys. 124 054901
[22] Li H Z and Yamamoto T 2001 J. Chem. Phys. 114 5774
[23] Firlej L, Kuchta B, Roth M W, Connolly M J and Wexler C 2008 Langmuir 24 12392
[24] Sun H, Ren P and Fried J R 1998 Comput. Theor. Polym. Sci. 8 229
[25] Bunte S W and Sun H 2000 J. Phys. Chem. B 104 2477
[26] Yang J, Ren Y, Tian A M and Sun H A 2000 J. Phys. Chem. B 104 4951
[27] McQuaid M J, Sun H and Rigby D 2004 J. Comput. Chem. 25 61
[28] Rigby D 2004 Fluid Phase Equilib. 217 77
[29] Andersen H C 1980 J. Chem. Phys. 72 2384
[30] Berendsen H J C, Postma J P M, van Gunsteren W F, DiNola A and Haak J R 1984 J. Chem. Phys. 81 3684
[31] Karasawa N and Goddard W A 1992 Macromolecules 25 7268
[32] Eward P P 1921 Ann. Phys. 369 253
[33] Verlet L 1967 Phys. Rev. 159 98
[34] Accelrys 2010 Mater. Studio Release 5.5 San Diego
[35] Tao C G, Feng H J, Zhou J, Lu L H and Lu X H 2009 Acta Phys. Chim. Sin. 25 1373
Related articles from Frontiers Journals
[1] Lingxiao Wang, Yin Jiang, Lianyi He, and Kai Zhou. Continuous-Mixture Autoregressive Networks Learning the Kosterlitz–Thouless Transition[J]. Chin. Phys. Lett., 2022, 39(12): 010501
[2] Sizhuo Yu, Yuan Gao, Bin-Bin Chen, and Wei Li. Learning the Effective Spin Hamiltonian of a Quantum Magnet[J]. Chin. Phys. Lett., 2021, 38(9): 010501
[3] Ying Li and Jiaxin Li. Advection and Thermal Diode[J]. Chin. Phys. Lett., 2021, 38(3): 010501
[4] Yong Gao. Ellipsoidal Thermal Concentrator and Cloak with Transformation Media[J]. Chin. Phys. Lett., 2021, 38(2): 010501
[5] Rongqian Wang, Jincheng Lu, and Jian-Hua Jiang. Moderate-Temperature Near-Field Thermophotovoltaic Systems with Thin-Film InSb Cells[J]. Chin. Phys. Lett., 2021, 38(2): 010501
[6] Liu-Jun Xu and Ji-Ping Huang. Active Thermal Wave Cloak[J]. Chin. Phys. Lett., 2020, 37(12): 010501
[7] Yun-Yun Yang , Shuai Xu , and Ji-Zhou He. Three-Terminal Thermionic Heat Engine Based on Semiconductor Heterostructures[J]. Chin. Phys. Lett., 2020, 37(12): 010501
[8] Quan-Wen Hou, Jia-Chi Li , and Xiao-Peng Zhao . Isotropic Thermal Cloaks with Thermal Manipulation Function[J]. Chin. Phys. Lett., 2021, 38(1): 010501
[9] Liujun Xu and Jiping Huang. Negative Thermal Transport in Conduction and Advection[J]. Chin. Phys. Lett., 2020, 37(8): 010501
[10] Ze-Bin Lin, Wei Li, Jing Fu, Yun-Yun Yang, Ji-Zhou He. A Three-Terminal Quantum Well Heat Engine with Heat Leakage[J]. Chin. Phys. Lett., 2019, 36(6): 010501
[11] Jia Li, Zhao-Liang Wang, Gui-Ce Yao. Reconstruction of Intrinsic Thermal Parameters of Methane Hydrate and Thermal Contact Resistance by Freestanding 3$\omega$ Method[J]. Chin. Phys. Lett., 2018, 35(7): 010501
[12] Run Hu, Jin-Yan Hu, Rui-Kang Wu, Bin Xie, Xing-Jian Yu, Xiao-Bing Luo. Examination of the Thermal Cloaking Effectiveness with Layered Engineering Materials[J]. Chin. Phys. Lett., 2016, 33(04): 010501
[13] ZHANG Yan-Chao, HE Ji-Zhou. Efficiency at Maximum Power of a Quantum Dot Heat Engine in an External Magnetic Field[J]. Chin. Phys. Lett., 2013, 30(1): 010501
[14] Azad A. Siddiqui**, Syed Muhammad Jawwad Riaz, M. Akbar . Foliation and the First Law of Black Hole Thermodynamics[J]. Chin. Phys. Lett., 2011, 28(5): 010501
[15] LI Wei, Q. A. Wang, A. Le Mehaute. Maximum Path Information and Fokker--Planck Equation[J]. Chin. Phys. Lett., 2008, 25(4): 010501
Viewed
Full text


Abstract