Chin. Phys. Lett.  2014, Vol. 31 Issue (1): 010302    DOI: 10.1088/0256-307X/31/1/010302
GENERAL |
Stabilizing Geometric Phase by Detuning in a Non-Markovian Dissipative Environment
XIAO Xing1, LI Yan-Ling2**
1College of Physics and Electronic Information, Gannan Normal University, Ganzhou 341000
2School of Information Engineering, Jiangxi University of Science and Technology, Ganzhou 341000
Cite this article:   
XIAO Xing, LI Yan-Ling 2014 Chin. Phys. Lett. 31 010302
Download: PDF(502KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The geometric phase of a two-level atom non-resonantly coupled to a non-Markovian dissipative environment is investigated. Compared to an earlier work [Chen J. J. et al. Phys. Rev. A 81 (2010) 022120] in which the non-Markovian effect has a serious correction on geometric phase, we find that the geometric phase can be stabilized by detuning in non-Markovian dissipative decoherence. Moreover, the geometric phase approaches the unitary geometric phase with the increase of detuning for any initial polar angle, which shows that the geometric phase is not only resilient to the Markovian noise but is also resilient to the non-Markovian noise when a large detuning between the qubit and environment is considered. Our results may be helpful for geometric quantum computation.
Received: 22 September 2013      Published: 28 January 2014
PACS:  03.65.Vf (Phases: geometric; dynamic or topological)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  42.50.Lc (Quantum fluctuations, quantum noise, and quantum jumps)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/1/010302       OR      https://cpl.iphy.ac.cn/Y2014/V31/I1/010302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XIAO Xing
LI Yan-Ling
[1] Pancharatnam S 1956 Proc. Indian Acad. Sci. Sect. A 44 247
[2] Berry M V 1984 Proc. R. Soc. A 392 45
[3] Aharonov Y and Anandan J 1987 Phys. Rev. Lett. 58 1593
[4] Samuel J and Bhandari R 1988 Phys. Rev. Lett. 60 2339
[5] Cui X D and Zheng Y J 2012 Phys. Rev. A 86 064104
[6] Duan L M, Cirac J I and Zoller P 2001 Science 292 1695
[7] Jones J A et al 2000 Nature 403 869
[8] Ekert A et al 2000 J. Mod. Opt. 47 2501
[9] Yan J Y, Wang L C and Yi X X 2010 Chin. Phys. B 19 040512
[10] Carollo A, Fuentes-Guridi I, Fran?a Santos M and Vedral V 2003 Phys. Rev. Lett. 90 160402
[11] Whitney R S and Gefen Y 2003 Phys. Rev. Lett. 90 190402
[12] Marzlin K P, Ghose S and Sanders B C 2004 Phys. Rev. Lett. 93 260402
[13] Zhang A P and Li F L 2013 Chin. Phys. B 22 030308
[14] Lambropoulos P, Nikolopoulos G M, Nielsen T R and Bay S 2000 Rep. Prog. Phys. 63 455
[15] Piilo J, Maniscalco S, H?rk?nen K and Suominen K A 2008 Phys. Rev. Lett. 100 180402
[16] Dublin F, Rotter D, Mukherjee M, Russo C, Eschner J and Blatt R 2007 Phys. Rev. Lett. 98 183003
[17] Lai C W, Maletinsky P, Badolato A and Imamoglu A 2006 Phys. Rev. Lett. 96 167403
[18] Galland C, Hogele A, Tureci H E and Imamoglu A 2008 Phys. Rev. Lett. 101 067402
[19] Breuer H P and Petruccione F 2002 The Theory of Open Quantum Systems(Oxford: Oxford University Press)
[20] Breuer H P, Burgarth D and Petruccione F 2004 Phys. Rev. B 70 045323
[21] Xiao X, Fang M F, Li Y L, Kang G D and Wu C 2010 Eur. Phys. J. D 57 447
[22] Yi X X, Wang L C and Wang W 2005 Phys. Rev. A 71 044101
[23] Chen J J, An J H, Tong Q J, Luo H G and Oh C H 2010 Phys. Rev. A 81 022120
[24] Bellomo B, Franco R L and Compagno G 2007 Phys. Rev. Lett. 99 160502
[25] Wu Y and Yang X 1997 Phys. Rev. Lett. 78 3086
[26] Wu Y and Yang X 2007 Phys. Rev. Lett. 98 013601
[27] Tong D M, Sj?qvist E, Kwek L C and Oh C H 2004 Phys. Rev. Lett. 93 080405
[28] Huang X L and Yi X X 2008 Europhys. Lett. 82 50001
[29] Banerjee S and Srikanth R 2008 Eur. Phys. J. D 46 335
[30] Fujikawa K and Hu M G 2009 Phys. Rev. A 79 052107
[31] Du J et al 2003 Phys. Rev. Lett. 91 100403
[32] Ericsson M, Achilles D, Barreiro J T, Branning D, Peters N A and Kwiat P G 2005 Phys. Rev. Lett. 94 050401
[33] Peng X, Wu S, Li J, Suter D and Du J 2010 Phys. Rev. Lett. 105 240405
[34] Cucchietti F M, et al 2010 Phys. Rev. Lett. 105 240406
Related articles from Frontiers Journals
[1] Wen Zheng, Jianwen Xu, Zhuang Ma, Yong Li, Yuqian Dong, Yu Zhang, Xiaohan Wang, Guozhu Sun, Peiheng Wu, Jie Zhao, Shaoxiong Li, Dong Lan, Xinsheng Tan, and Yang Yu. Measuring Quantum Geometric Tensor of Non-Abelian System in Superconducting Circuits[J]. Chin. Phys. Lett., 2022, 39(10): 010302
[2] Song Wang, Lei Wang, Furong Zhang, and Ling-Jun Kong. Optimization of Light Field for Generation of Vortex Knot[J]. Chin. Phys. Lett., 2022, 39(10): 010302
[3] Weizheng Cao, Yunlong Su, Qi Wang, Cuiying Pei, Lingling Gao, Yi Zhao, Changhua Li, Na Yu, Jinghui Wang, Zhongkai Liu, Yulin Chen, Gang Li, Jun Li, and Yanpeng Qi. Quantum Oscillations in Noncentrosymmetric Weyl Semimetal SmAlSi[J]. Chin. Phys. Lett., 2022, 39(4): 010302
[4] Heng-Xi Ji, Lin-Han Mo, and Xin Wan. Dynamics of the Entanglement Zero Modes in the Haldane Model under a Quantum Quench[J]. Chin. Phys. Lett., 2022, 39(3): 010302
[5] Xiang Zhang, Zhaozheng Lyu, Guang Yang, Bing Li, Yan-Liang Hou, Tian Le, Xiang Wang, Anqi Wang, Xiaopei Sun, Enna Zhuo, Guangtong Liu, Jie Shen, Fanming Qu, and Li Lu. Anomalous Josephson Effect in Topological Insulator-Based Josephson Trijunction[J]. Chin. Phys. Lett., 2022, 39(1): 010302
[6] Jiong-Hao Wang, Yu-Liang Tao, and Yong Xu. Anomalous Transport Induced by Non-Hermitian Anomalous Berry Connection in Non-Hermitian Systems[J]. Chin. Phys. Lett., 2022, 39(1): 010302
[7] Yunqing Ouyang, Qing-Rui Wang, Zheng-Cheng Gu, and Yang Qi. Computing Classification of Interacting Fermionic Symmetry-Protected Topological Phases Using Topological Invariants[J]. Chin. Phys. Lett., 2021, 38(12): 010302
[8] Kun Luo, Wei Chen, Li Sheng, and D. Y. Xing. Random-Gate-Voltage Induced Al'tshuler–Aronov–Spivak Effect in Topological Edge States[J]. Chin. Phys. Lett., 2021, 38(11): 010302
[9] Zhuo Cheng and Zhenhua Yu. Supervised Machine Learning Topological States of One-Dimensional Non-Hermitian Systems[J]. Chin. Phys. Lett., 2021, 38(7): 010302
[10] Z. Z. Zhou, H. J. Liu, G. Y. Wang, R. Wang, and X. Y. Zhou. Dual Topological Features of Weyl Semimetallic Phases in Tetradymite BiSbTe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 010302
[11] X. M. Yang , L. Jin, and Z. Song. Topological Knots in Quantum Spin Systems[J]. Chin. Phys. Lett., 2021, 38(6): 010302
[12] Gang-Feng Guo, Xi-Xi Bao, Lei Tan, and Huai-Qiang Gu. Phase-Modulated 2D Topological Physics in a One-Dimensional Ultracold System[J]. Chin. Phys. Lett., 2021, 38(4): 010302
[13] Tianyu Li, Yong-Sheng Zhang, and Wei Yi. Two-Dimensional Quantum Walk with Non-Hermitian Skin Effects[J]. Chin. Phys. Lett., 2021, 38(3): 010302
[14] Qian Sui, Jiaxin Zhang, Suhua Jin, Yunyouyou Xia, and Gang Li. Model Hamiltonian for the Quantum Anomalous Hall State in Iron-Halogenide[J]. Chin. Phys. Lett., 2020, 37(9): 010302
[15] Kaixuan Zhang, Yongping Du, Pengdong Wang, Laiming Wei, Lin Li, Qiang Zhang, Wei Qin, Zhiyong Lin, Bin Cheng, Yifan Wang, Han Xu, Xiaodong Fan, Zhe Sun, Xiangang Wan, and Changgan Zeng. Butterfly-Like Anisotropic Magnetoresistance and Angle-Dependent Berry Phase in a Type-II Weyl Semimetal WP$_{2}$[J]. Chin. Phys. Lett., 2020, 37(9): 010302
Viewed
Full text


Abstract