Chin. Phys. Lett.  2014, Vol. 31 Issue (1): 010201    DOI: 10.1088/0256-307X/31/1/010201
GENERAL |
Darboux Transformations via Lie Point Symmetries: KdV Equation
LI Yu-Qi1,2, CHEN Jun-Chao1, CHEN Yong1, LOU Sen-Yue1,2**
1Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai 200062
2Department of Physics, Ningbo University, Ningbo 315211
Cite this article:   
LI Yu-Qi, CHEN Jun-Chao, CHEN Yong et al  2014 Chin. Phys. Lett. 31 010201
Download: PDF(428KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract By localizing the nonlocal symmetries of a nonlinear model to local symmetries of an enlarged system, we find Darboux-B?cklund transformations for both the original and prolonged systems. The idea is explicitly realized for the well-known KdV equation.
Received: 22 September 2013      Published: 28 January 2014
PACS:  02.30.Ik (Integrable systems)  
  05.45.Yv (Solitons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/31/1/010201       OR      https://cpl.iphy.ac.cn/Y2014/V31/I1/010201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Yu-Qi
CHEN Jun-Chao
CHEN Yong
LOU Sen-Yue
[1] Kivshar Yu S and Malomed B A 1989 Rev. Mod. Phys. 61 763
Kivshar Yu S and Luther-Davies B 1998 Phys. Rep. 298 81
[2] Korteweg D J and de Vries F 1895 Philos. Mag. 39 422
[3] Russell J S 1844 Report Waves: Report 14th Meeting of the British Association for the Advancement of Science (London: John Murray) pp 311–390
[4] Crighton D G 1995 Acta Appl. Math. 39 39
[5] Zabusky N J and Kruskal M D 1965 Phys. Rev. Lett. 15 240
[6] Lou S Y and Hu X B 1997 J. Phys. A 30 L95
Lou S Y and Hu X B 1997 J. Math. Phys. 38 6401
[7] Lou S Y 1994 J. Math. Phys. 35 2390
[8] Lou S Y, Hu X R and Chen Y 2012 J. Phys. A: Math. Theor. 45 155209
Hu X R, Lou S Y and Chen Y 2012 Phys. Rev. E 85 056607
[9] Lou S Y and Hu X B 1993 Chin. Phys. Lett. 10 577
[10] Cao C W 1987 Henan Sci. 5 1
Cao C W 1988 Chin. Q. J. Math. 3 90
Cao C W 1990 Sci. Chin. A 33 528
Cao C W and Geng X G 1990 J. Phys. A 23 4117
Cao C W and Geng X G 1991 J. Math. Phys. 32 2323
[11] Li Y S 1992 Sci. Chin. A 35 600 (in Chinese)
Boiti M, Pempinelli F and Pogrebkov A K 1991 Inverse Probl. 7 43
Related articles from Frontiers Journals
[1] S. Y. Lou, Man Jia, and Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 010201
[2] Wen-Xiu Ma. Matrix Integrable Fourth-Order Nonlinear Schr?dinger Equations and Their Exact Soliton Solutions[J]. Chin. Phys. Lett., 2022, 39(10): 010201
[3] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 010201
[4] Xiao-Man Zhang, Yan-Hong Qin, Li-Ming Ling, and Li-Chen Zhao. Inelastic Interaction of Double-Valley Dark Solitons for the Hirota Equation[J]. Chin. Phys. Lett., 2021, 38(9): 010201
[5] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 010201
[6] Yusong Cao and Junpeng Cao. Exact Solution of a Non-Hermitian Generalized Rabi Model[J]. Chin. Phys. Lett., 2021, 38(8): 010201
[7] Zequn Qi , Zhao Zhang , and Biao Li. Space-Curved Resonant Line Solitons in a Generalized $(2+1)$-Dimensional Fifth-Order KdV System[J]. Chin. Phys. Lett., 2021, 38(6): 010201
[8] Wei Wang, Ruoxia Yao, and Senyue Lou. Abundant Traveling Wave Structures of (1+1)-Dimensional Sawada–Kotera Equation: Few Cycle Solitons and Soliton Molecules[J]. Chin. Phys. Lett., 2020, 37(10): 010201
[9] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 010201
[10] Danda Zhang, Da-Jun Zhang, Sen-Yue Lou. Lax Pairs of Integrable Systems in Bidifferential Graded Algebras[J]. Chin. Phys. Lett., 2020, 37(4): 010201
[11] Yu-Han Wu, Chong Liu, Zhan-Ying Yang, Wen-Li Yang. Breather Interaction Properties Induced by Self-Steepening and Space-Time Correction[J]. Chin. Phys. Lett., 2020, 37(4): 010201
[12] Bao Wang, Zhao Zhang, Biao Li. Soliton Molecules and Some Hybrid Solutions for the Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2020, 37(3): 010201
[13] Zhao Zhang, Shu-Xin Yang, Biao Li. Soliton Molecules, Asymmetric Solitons and Hybrid Solutions for (2+1)-Dimensional Fifth-Order KdV Equation[J]. Chin. Phys. Lett., 2019, 36(12): 010201
[14] Zhou-Zheng Kang, Tie-Cheng Xia. Construction of Multi-soliton Solutions of the $N$-Coupled Hirota Equations in an Optical Fiber[J]. Chin. Phys. Lett., 2019, 36(11): 010201
[15] Yong-Shuai Zhang, Jing-Song He. Bound-State Soliton Solutions of the Nonlinear Schr?dinger Equation and Their Asymmetric Decompositions[J]. Chin. Phys. Lett., 2019, 36(3): 010201
Viewed
Full text


Abstract