Chin. Phys. Lett.  2013, Vol. 30 Issue (9): 098104    DOI: 10.1088/0256-307X/30/9/098104
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Preparation of Micropowder by a Combination of Jet-Milling and Electrostatic Dispersion
YIN Peng-Fei, ZHANG Rong**, LIU Qian, HU Jian-Chang, LI Yin-Bing, LI Ning
Key Laboratary of Space Applied Physics and Chemistry (Ministry of Education), and School of Science, Northwestern Polytechnical University, Xi'an 710072
Cite this article:   
YIN Peng-Fei, ZHANG Rong, LIU Qian et al  2013 Chin. Phys. Lett. 30 098104
Download: PDF(785KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We develop a new method to prepare micropowders with a combination of jet-milling and electrostatic dispersion techniques. The dispersiveness of the powder can be obviously improved by charging the particles during the process of jet-milling. Calcium carbonate (CaCO3) powders with high dispersion are prepared by using this method from two different initial particle sizes (10.93 and 25.43 μm). The experimental studies and theoretical analysis about the effects of preparation parameter on dispersiveness of the powder are investigated, showing that the jet-milling/electrostatic dispersion (J/E) is a considerably effective way to prepare micropowder in ambient atmosphere. It is found that the strength of electrostatic field and particle radius of the raw powder strongly affect the dispersion. The average particle size of both powders decreases with the increase in charging voltage while the reduction of particle size is more obvious in the powder with larger initial particle size.
Received: 18 April 2013      Published: 21 November 2013
PACS:  81.20.Ev (Powder processing: powder metallurgy, compaction, sintering, mechanical alloying, and granulation)  
  47.60.Kz (Flows and jets through nozzles)  
  47.27.wg (Turbulent jets)  
  52.80.Hc (Glow; corona)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/9/098104       OR      https://cpl.iphy.ac.cn/Y2013/V30/I9/098104
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YIN Peng-Fei
ZHANG Rong
LIU Qian
HU Jian-Chang
LI Yin-Bing
LI Ning
[1] Lu S C 2004 Handbook Powder Technology (Beijing: Chemical Industry Press) p 176 (in Chinese)
[2] Wan C and Shen Z G 2007 Powder Sci. Technol. 13 45 (in Chinese)
[3] Midoux N, Hosek P, Pailleres L and Authelin J R 1999 Powder Technol. 104 113
[4] Nykamp G, Carstensen U and Müller B W 2002 Int. J. Pharm. 242 79
[5] Calvert G, Hassanpour A and Ghadiri M 2011 Chem. Eng. Res. Des. 89 519
[6] Ren J, Lu S C and Shen J 2001 Powder Technol. 120 187
[7] Ren J, Lu S C and Tang F G 2003 Powder Technol. 135 261
[8] Xu Z and Lu S C 2009 Adv. Mater. Res. 58 1
[9] Li G C and Ji S F 2007 Chin. Powder Sci. Technol. 13 23 (in Chinese)
[10] Masuda H 2009 Adv. Powder Technol. 20 113
[11] Meng X B, Zhu J X and Zhang H 2009 J. Electrostat. 67 663
Related articles from Frontiers Journals
[1] Wen-Dan Wang, Ao Li, Guo-Heng Xu, Pei Wang, Yue-Gao Liu, Li-Ping Wang. Synthesis of Polycrystalline Diamond Compact with Selenium: Discovery of a New Se–C Compound[J]. Chin. Phys. Lett., 2020, 37(5): 098104
[2] Gang-Ling Hao, Yu-Chuan Li, Xing-Fu Wang, Wei-Guo Wang, Xin-Fu Wang, Dan Wang, Xian-Yu Li. Fe–Al Phase Formation Studied by Internal Friction during Heating Process[J]. Chin. Phys. Lett., 2020, 37(3): 098104
[3] Haijuan Wang, Xiao Lan, Yao Huang, Xunyong Jiang. Lithium Storage Property of Graphite/AlCuFe Quasicrystal Composites[J]. Chin. Phys. Lett., 2019, 36(9): 098104
[4] HAO Gang-Ling, WANG Xin-Fu, LI Xian-Yu. Internal Friction Evidence on the Formation of Grain Boundary in Al Powder Sintering Process[J]. Chin. Phys. Lett., 2015, 32(02): 098104
[5] PENG Long, HU Yue-Bin, GUO Cheng, LI Le-Zhong, WANG Rui, HU Yun, TU Xiao-Qiang. Preparation and Magnetic Properties of SrFe12O19 Ferrites Suitable for Use in Self-Biased LTCC Circulators[J]. Chin. Phys. Lett., 2015, 32(01): 098104
[6] SUN Jin-Feng, LI Xiao-Pu, LIANG Bao-Yan, ZHAO Yu-Cheng, WANG Ming-Zhi. Effects of Raw Material Content on Efficiency of TiN Synthesized by Reactive Ball Milling Ti and Urea[J]. Chin. Phys. Lett., 2009, 26(7): 098104
[7] PENG Long, ZHANG Huai-Wu, WEN Qi-Ye, SONG Yuan-Qiang, SU Hua, John Q. Xiao. Origin of Room-Temperature Ferromagnetism for Cobalt-Doped ZnO Diluted Magnetic Semiconductor[J]. Chin. Phys. Lett., 2008, 25(4): 098104
[8] ZHONG Hong-Mei, LU Wei, SUN Yan, LI Zhi-Feng. Fabrication and Photoluminescence Properties of ZnO Nanorods[J]. Chin. Phys. Lett., 2007, 24(9): 098104
[9] ZHAO Yu-Cheng, WANG Ming-Zhi. Cubic BN Sintered with Al under High Temperature and High Pressure[J]. Chin. Phys. Lett., 2007, 24(8): 098104
[10] ZHU Ke, LI Cheng-Feng, ZHU Zhen-Gang. Measurement of Electrical Conductivity of Porous Titanium and Ti6Al4V Prepared by the Powder Metallurgy Method[J]. Chin. Phys. Lett., 2007, 24(1): 098104
[11] YANG Deng-Ke, WEN Cui-E, HAN Fu-Sheng, WANG Qing-Zhou, LI Hai-Jin. Preparation of Mg55Ni35Si10 Amorphous Powders by Mechanical Alloying and Consolidation by Vacuum Hot Pressing[J]. Chin. Phys. Lett., 2006, 23(8): 098104
[12] LI Cheng-Feng, ZHU Zhen-Gang. Apparent Electrical Conductivity of Porous Titanium Prepared by the Powder Metallurgy Method[J]. Chin. Phys. Lett., 2005, 22(10): 098104
[13] ZANG Guo-Zhong, WANG Jin-Feng, CHEN Hong-Cun, SU Wen-Bin, WANG Chun-Ming, QI Peng. Nonlinear Electrical Behaviour of Composite SnO2--Zn2SnO4 System[J]. Chin. Phys. Lett., 2005, 22(3): 098104
[14] FANG Yi-Kun, ZHU Ming-Gang, GUO Yong-Quan, LI Wei, HAN Bao-Shan. Magnetic Microstructure of Sintered Nd-Fe-B Magnets Made from Casting Strips[J]. Chin. Phys. Lett., 2004, 21(8): 098104
[15] WANG Bao-Shan, SHI Xing-Jue, CHEN Yong, GE Hong-Kui, WONG Teng-Fong. Grain Crush and Its Evolution in Granular Material: a Two-Dimensional Distinct Element Model Approach[J]. Chin. Phys. Lett., 2004, 21(8): 098104
Viewed
Full text


Abstract