Chin. Phys. Lett.  2013, Vol. 30 Issue (9): 097801    DOI: 10.1088/0256-307X/30/9/097801
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Switching Plasmon Resonances by Polarization of the Incident Light in Metamolecules
LIU Jian-Qiang1**, CHEN Jing2, WANG Dian-Yuan1, ZHOU Yu-Xiu1, CHEN Zhen-Hua3, WANG Ling-Ling3
1School of Science, Jiujiang University, Jiujiang 332005
2College of Electronic Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210046
3School of Physics and Microelectronics, Hunan University, Changsha 410082
Cite this article:   
LIU Jian-Qiang, CHEN Jing, WANG Dian-Yuan et al  2013 Chin. Phys. Lett. 30 097801
Download: PDF(949KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We numerically demonstrate the modulation of plasmon resonances in a metamolecule composed of metal bars and L-shaped nanoparticles by using the finite difference time domain method. Due to the dependence of electromagnetic coupling on polarization of the incident light, we show that the superradiant and subradiant states can be switched from ON and OFF resonantly. These two resonances are continuously adjustable as the polarization angle of incident wave changes. This feature reveals a possibility of dynamically switching the coupled plasmon resonances of an artificial microstructure and to construct functional metamaterials, which is helpful for nanophotonic devices such as filters and optical switches.
Received: 15 April 2013      Published: 21 November 2013
PACS:  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  78.20.Bh (Theory, models, and numerical simulation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/9/097801       OR      https://cpl.iphy.ac.cn/Y2013/V30/I9/097801
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Jian-Qiang
CHEN Jing
WANG Dian-Yuan
ZHOU Yu-Xiu
CHEN Zhen-Hua
WANG Ling-Ling
[1] Canfield B K, Kujala S, Kauranen M, Jefimovs K, Vallius T and Turunen J 2005 Appl. Phys. Lett. 86 183109
[2] Yu B H, Zhang D L, Li Y B and Tang Q B 2013 Chin. Phys. B 22 014212
[3] Tao J, Lu Y H, Zheng R S, Lin K Q, Xie Z G, Luo Z F, Li S L, Wang P, Ming H 2008 Chin. Phys. Lett. 25 4459
[4] Aizpurua J, Bryant G W, Richter L J and Garcíade Abajo F J 2005 Phys. Rev. B 71 235420
[5] Chen J, Dong W, Wang Q G, Tang C J, Chen Z, Wang Z L 2012 Chin. Phys. Lett. 29 097303
[6] Rockstuhl C, Lederer F, Etrich C, Zentgraf T, Kuhl J and Giessen H 2006 Opt. Express 14 8827
[7] H Rochholz, N Bocchio and M Kreiter 2007 New J. Phys. 9 53
[8] Hannu H, Jouni M, Janne L, Markku K and Martti K 2010 Opt. Express 18 16601
[9] Yang J, Zhang J S, Wu X F, Gong Q H 2009 Chin. Phys. Lett. 26 067802
[10] Sung J, Hicks E M, Van Duyne R P and Spears K G 2007 J. Phys. Chem. C 111 10368
[11] Hutter E, Fendler J H 2004 Adv. Mater. 16 1685
[12] Liu N, Kaiser S and Giessen H 2008 Adv. Mater. 20 4521
[13] Hentschel M, Saliba M, Vogelgesang R, Giessen H, Alivisatos A P and Liu N 2010 Nano Lett. 10 2721
[14] Prodan E, Radloff C, Halas N J, Nordlander P 2003 Science 302 419
[15] Zhang S, Genov D A, Wang Y, Liu M and Zhang X 2008 Phys. Rev. Lett. 101 047401
[16] Liu N, Langguth L, Weiss T, Kastel J, Fleischhauer M, Pfau T and Giessen H 2009 Nat. Mater. 8 758
[17] Sonnefraud Y, Verellen N, Sobhani H, Vandenbosch G A E, Moshchalkov V V, Dorpe P V, Nordlander P and Maier S A 2010 ACS Nano 4 1664
[18] Miroshnichenko A E, Flach S, Kivshar Y S 2010 Rev. Mod. Phys. 82 2257
[19] Chen J, Shen Q, Chen Z, Wang Q G, Tang C J and Wang Z L 2012 J. Chem. Phys. 136 214703
[20] Papasimakis N and Zheludev N I 2009 Opt. Photon. News 20 22
[21] Taflove A and Hagness S C 2000 Computational Electrodynamics: The Finite-Difference Time-Domain Method 2nd edn (Boston: Artech House)
[22] Lumerical FDTD solutions 7.5 http://www.lumerical.com
[23] Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
Related articles from Frontiers Journals
[1] Zengle Cao, Fengrui Hu, Zaiqin Man, Chunfeng Zhang, Weihua Zhang, Xiaoyong Wang, and Min Xiao. Trion-Facilitated Dexter-Type Energy Transfer in a Cluster of Single Perovskite CsPbBr$_{3}$ Nanocrystals[J]. Chin. Phys. Lett., 2020, 37(12): 097801
[2] Jing Zhang, Yong-Gang Xu, Jian-Xin Zhang, Lu-Lu Guan, Yong-Fang Li. Bright-Dark Mode Coupling Model of Plasmons[J]. Chin. Phys. Lett., 2020, 37(3): 097801
[3] Yi-Tao Yang, Chong-Hong Zhang, Chang-Hao Su, Zhao-Nan Ding, Yin Song, Yu-Guang Chen. Aligned Elongation of Ag Nanoparticles Embedded in Silica Irradiated with High Energy Ni Ions[J]. Chin. Phys. Lett., 2018, 35(9): 097801
[4] Si Xiao, Hui Wang, Sheng Liu, Min Li, Ying-Wei Wang, Jia-Zhang Chen, Lu-Hua Guo, Jian-Bo Li, Jun He. Saturable Absorption Enchantment of Au Nanorods Based on Energy Transfer between Longitudinal and Transverse Energy Levels[J]. Chin. Phys. Lett., 2018, 35(6): 097801
[5] Lu-Hua Guo, Ying-Wei Wang, Yong-Qiang Jiang, Si Xiao, Jun He. Dependence of Nonlinear Optical Response of Anatase TiO$_{2}$ on Shape and Excitation Intensity[J]. Chin. Phys. Lett., 2017, 34(7): 097801
[6] Jiang Qin, Peng Lang, Bo-Yu Ji, N. K. Alemayehu, Han-Yan Tao, Xun Gao, Zuo-Qiang Hao, Jing-Quan Lin. Imaging Ultrafast Plasmon Dynamics within a Complex Dolmen Nanostructure Using Photoemission Electron Microscopy[J]. Chin. Phys. Lett., 2016, 33(11): 097801
[7] PENG Xiao-Niu, WANG Ya-Lan, WANG Hao. The Evolution of the Extinction and Growth Mechanism of the Silver Nanoplates[J]. Chin. Phys. Lett., 2015, 32(11): 097801
[8] LI Yong, LING Hong, GAO Lei, SONG Yue-Li, TIAN Ming-Li, ZHOU Feng-Qun. Synthesis, Structure and Optical Properties of CdO Nanocrystals Directly Grown on Cd Foil[J]. Chin. Phys. Lett., 2015, 32(10): 097801
[9] ZHANG Yong, XIE Long-Zhen, LI Hai-Rong, WANG Peng, LIU Su, PENG Ying-Quan, ZHANG Miao. Facile Synthesis of Rose-Like NiO Nanoparticles and Their Ethanol Gas-Sensing Property[J]. Chin. Phys. Lett., 2015, 32(09): 097801
[10] QIN Jiang, JI Bo-Yu, HAO Zuo-Qiang, LIN Jing-Quan. Probing of Ultrafast Plasmon Dynamics on Gold Bowtie Nanostructure Using Photoemission Electron Microscopy[J]. Chin. Phys. Lett., 2015, 32(06): 097801
[11] WANG Xiao-Bo, LI Yong, YAN Ling-Ling, LI Xin-Jian. Temperature-Dependent Photoluminescence from GaN/Si Nanoporous Pillar Array[J]. Chin. Phys. Lett., 2015, 32(5): 097801
[12] WANG Ya-Lan, CHENG Zi-Qiang, MA Liang, PENG Xiao-Niu, HAO Zhong-Hua, WANG Qu-Quan. Power-Dependent Luminescence of CdSe/ZnS Nanocrystal Assembled Layer-by-Layer on a Silver Nanorod Array[J]. Chin. Phys. Lett., 2015, 32(03): 097801
[13] Meisam Omidi, Gh. Amoabediny, F. Yazdian, M. Habibi-Rezaei. Protein Based Localized Surface Plasmon Resonance Gas Sensing[J]. Chin. Phys. Lett., 2015, 32(01): 097801
[14] LI Yong, WANG Xiao-Bo, ZHAO Jin-Chao, LI Xin-Jian. Paths for the Non-radiative Recombination Occurring in CdS:CdO/Si Multi-Interface Nanoheterostructure Array[J]. Chin. Phys. Lett., 2014, 31(07): 097801
[15] Halimah Mohamed. K, Mahmoud Goodarz Naseri, Amir Reza Sadrolhosseini, Arash Dehzangi, Ahmad Kamalianfar, Elias B Saion, Reza Zamiri, Hossein Abastabar Ahangar, Burhanuddin Y. Majlis. Silver Nanoparticle Fabrication by Laser Ablation in Polyvinyl Alcohol Solutions[J]. Chin. Phys. Lett., 2014, 31(07): 097801
Viewed
Full text


Abstract