Chin. Phys. Lett.  2013, Vol. 30 Issue (9): 097201    DOI: 10.1088/0256-307X/30/9/097201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Wavevector Filtering through Monolayer and Bilayer Graphene Superlattices
F. Sattari*, E. Faizabadi
School of Physics, Iran University of Science and Technology, 16844 Tehran, Iran
Cite this article:   
F. Sattari, E. Faizabadi 2013 Chin. Phys. Lett. 30 097201
Download: PDF(613KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the transport properties through monolayer and bilayer graphene superlattices modulated by an in-plane homogeneous electric field based on the transfer matrix method. It is found that the angular range of the transmission probability through a graphene superlattice can be effectively controlled by the number of barriers and this results in the structure having efficient wavevector filters. As the number of barriers increases, this range shrinks. It is also shown that the conductance of the systems has an oscillatory behavior with respect to the barrier height and it decreases with the increasing number of barriers.
Received: 09 June 2013      Published: 21 November 2013
PACS:  72.80.Vp (Electronic transport in graphene)  
  73.23.Ad (Ballistic transport)  
  81.05.ue (Graphene)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/9/097201       OR      https://cpl.iphy.ac.cn/Y2013/V30/I9/097201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
F. Sattari
E. Faizabadi
[1] Novoselov K S et al 2004 Science 306 666
Novoselov K S et al 2005 Nature 438 197
[2] Novoselov K S and Geim A K 2007 Nat. Mater. 6 183
[3] Katsnelson M I et al 2006 Nat. Phys. 2 620
[4] Barbier M et al 2008 Phys. Rev. B 77 115446
[5] Zhang Y et al 2005 Nature 438 201
[6] Wright A R et al 2009 Appl. Phys. Lett. 95 072101
[7] Mikhaliov A and Ziegler K 2008 J. Phys.: Condens. Matter 20 384204
[8] Novoselov K S et al 2006 Nat. Phys. 2 177
[9] Tworzydlo J et al 2006 Phys. Rev. Lett. 96 246802
[10] Katsnelson M I 2006 Eur. Phys. J. B 51 157
[11] Hu S J et al 2012 Chin. Phys. Lett. 29 057201
[12] Beenakker C W J 2006 Phys. Rev. Lett. 97 067007
[13] Novoselov K S et al 2006 Nat. Phys. 2 177
[14] McCann E and Falko V I 2006 Phys. Rev. Lett. 96 086805
[15] de Andres P L et al 2008 Phys. Rev. B 77 045403
[16] Masir M R et al 2008 Appl. Phys. Lett. 93 242103
[17] Raoux A et al 2010 Phys. Rev. B 81 073407
[18] Concha A and Tesanovic Z 2010 Phys. Rev. B 82 033413
[19] Chen X and Tao J W 2009 Appl. Phys. Lett. 94 262102
[20] Bai C et al 2011 Appl. Phys. A 103 427
[21] Schomerus H 2007 Phys. Rev. B 76 045433
[22] Zhang G P et al 2011 Phys. Lett. A 375 1043
[23] Zhang G P et al 2011 Chem. Phys. Lett. 516 225
[24] Niu Z P et al 2008 Eur. Phys. J. B 66 245
[25] Ke Q et al 2011 Solid State Commun. 151 1131
[26] Faizabadi E et al 2012 Eur. Phys. J. B 85 30073
[27] Esmailpour A et al 2009 Phys. Rev. B 79 165412
[28] Bai C and Zhang X 2007 Phys. Rev. B 76 075430
[29] Sh Q et al 2008 J. Phys.: Condens. Matter 20 485210
[30] Mukhopadhyay S et al 2010 Phys. Status Solidi B 247 342
[31] Titov M 2007 Europhys. Lett. 79 17004
[32] Buttiker M 1986 Phys. Rev. Lett. 57 1761
Related articles from Frontiers Journals
[1] Lijun Zhu, Lin Li, Xiaodong Fan, Zhongniu Xie, and Changgan Zeng. Effect of Boundary Scattering on Magneto-Transport Performance in BN-Encapsulated Graphene[J]. Chin. Phys. Lett., 2022, 39(9): 097201
[2] Wen-Han Dong, De-Liang Bao, Jia-Tao Sun, Feng Liu, and Shixuan Du. Manipulation of Dirac Fermions in Nanochain-Structured Graphene[J]. Chin. Phys. Lett., 2021, 38(9): 097201
[3] Hang Yang, Wei Chen, Ming-Yang Li, Feng Xiong, Guang Wang, Sen Zhang, Chu-Yun Deng, Gang Peng, and Shi-Qiao Qin. Ultrathin Al Oxide Seed Layer for Atomic Layer Deposition of High-$\kappa$ Al$_{2}$O$_{3}$ Dielectrics on Graphene[J]. Chin. Phys. Lett., 2020, 37(7): 097201
[4] Ran Tao, Lin Li, Li-Jun Zhu, Yue-Dong Yan, Lin-Hai Guo, Xiao-Dong Fan, and Chang-Gan Zeng. Giant-Capacitance-Induced Wide Quantum Hall Plateaus in Graphene on LaAlO$_{3}$/SrTiO$_{3}$ Heterostructures[J]. Chin. Phys. Lett., 2020, 37(7): 097201
[5] Ashkan Horri, Rahim Faez. Full-Quantum Simulation of Graphene Self-Switching Diodes[J]. Chin. Phys. Lett., 2019, 36(6): 097201
[6] Jian-Ying Chen, Lu Liu, Chun-Xia Li, Jing-Ping Xu. Chemical Vapor Deposition Growth of Large-Area Monolayer MoS$_{2}$ and Fabrication of Relevant Back-Gated Transistor[J]. Chin. Phys. Lett., 2019, 36(3): 097201
[7] Yu-Bing Wang, Wei-Hong Yin, Qin Han, Xiao-Hong Yang, Han Ye, Shuai Wang, Qian-Qian Lv, Dong-Dong Yin. The Nonlinear Electronic Transport in Multilayer Graphene on Silicon-on-Insulator Substrates[J]. Chin. Phys. Lett., 2017, 34(6): 097201
[8] Yan-Hua Li, Yong-Jian Xiong. Single-Parameter Quantum Pumping in Graphene Nanoribbons with Staggered Sublattice Potential[J]. Chin. Phys. Lett., 2017, 34(5): 097201
[9] Ze-Zhao He, Ke-Wu Yang, Cui Yu, Qing-Bin Liu, Jing-Jing Wang, Xu-Bo Song, Ting-Ting Han, Zhi-Hong Feng, Shu-Jun Cai. Comparative Study of Monolayer and Bilayer Epitaxial Graphene Field-Effect Transistors on SiC Substrates[J]. Chin. Phys. Lett., 2016, 33(08): 097201
[10] Tian-Yi Han, Guang-Wei Deng, Da Wei, Guo-Ping Guo. Multiplexing Read-Out of Charge Qubits by a Superconducting Resonator[J]. Chin. Phys. Lett., 2016, 33(04): 097201
[11] Sedighe Salimian, Mohammad Esmaeil Azim Araghi. Effect of Residual Charge Carrier on the Performance of a Graphene Field Effect Transistor[J]. Chin. Phys. Lett., 2016, 33(01): 097201
[12] HE Ze-Zhao, YANG Ke-Wu, YU Cui, LI Jia, LIU Qing-Bin, LU Wei-Li, FENG Zhi-Hong, CAI Shu-Jun. Improvement of Metal-Graphene Ohmic Contact Resistance in Bilayer Epitaxial Graphene Devices[J]. Chin. Phys. Lett., 2015, 32(11): 097201
[13] FAN Tian-Ju, YUAN Chun-Qiu, TANG Wei, TONG Song-Zhao, LIU Yi-Dong, HUANG Wei, MIN Yong-Gang, Arthur J. Epstein. A Novel Method of Fabricating Flexible Transparent Conductive Large Area Graphene Film[J]. Chin. Phys. Lett., 2015, 32(07): 097201
[14] YI Ming-Dong, GUO Jia-Lin, HU Bo, XIA Xian-Hai, FAN Qu-Li, XIE Ling-Hai, HUANG Wei. Memory Behaviors Based on ITO/Graphene Oxide/Al Structure[J]. Chin. Phys. Lett., 2015, 32(07): 097201
[15] LUO Wen-Gang, WANG Hua-Feng, CAI Kai-Ming, HAN Wen-Peng, TAN Ping-Heng, HU Ping-An, WANG Kai-You. Synthesis of Homogenous Bilayer Graphene on Industrial Cu Foil[J]. Chin. Phys. Lett., 2014, 31(06): 097201
Viewed
Full text


Abstract