Chin. Phys. Lett.  2013, Vol. 30 Issue (9): 094701    DOI: 10.1088/0256-307X/30/9/094701
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Shear Banding Driven by Electric Field and Shear Flow
ZHENG Jie, FU Wei-Juan, ZHOU Lu-Wei**
State Key Laboratory of Surface Physics, and Department of Physics, Fudan University, Shanghai 200433
Cite this article:   
ZHENG Jie, FU Wei-Juan, ZHOU Lu-Wei 2013 Chin. Phys. Lett. 30 094701
Download: PDF(622KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The shear banding is explored in a granular suspension driven by electric field and shear flow. We find that, given an imposed electric field, there is a critical shear rate determining whether shear banding emerges. A phase diagram of shear banding and fluidization is constructed by using the present experimental data. The evolution in different shear banding phases constitutes an apparent shear thinning phenomenon, probably reflecting an underlying perspective of shear banding. Using the two-phase model, combining with mean field approach and the Onsager least dissipation principle, we give a qualitative explanation of our experimental findings. The results suggest that the stress heterogeneity plays a crucial role for the physical origin of shear banding in this system.
Received: 22 April 2013      Published: 21 November 2013
PACS:  47.57.Qk (Rheological aspects)  
  47.65.Gx (Electrorheological fluids)  
  83.10.Tv (Structural and phase changes)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/9/094701       OR      https://cpl.iphy.ac.cn/Y2013/V30/I9/094701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHENG Jie
FU Wei-Juan
ZHOU Lu-Wei
[1] Liu A J and Nagel S R 2001 Jamming and Rheology: Constrained Dynamics on Microscopic and Macroscopic Scales (London: Taylor and Francis)
[2] Ovarlez G et al 2009 Rheol. Acta 48 831
[3] Coussot P and Ovarlez G 2010 Eur. Phys. J. E 33 183
[4] Martens K, Boucquet L and Barrat J L 2012 Soft Matter 8 4197
[5] Coussot P et al 2002 Phys. Rev. Lett. 88 218301
[6] Varnik F et al 2003 Phys. Rev. Lett. 90 095702
[7] Divoux T et al 2010 Phys. Rev. Lett. 104 208301
[8] Fall A et al 2009 Phys. Rev. Lett. 103 178301
[9] M ?ller P C F et al 2008 Phys. Rev. E 77 041507
[10] Persson B N J 1998 Sliding Friction: Physical Principles and Applications (Berlin: Springer)
[11] Trappe V et al 2001 Nature 411 772
[12] Fan Z K, Liang S H and Xue X 2002 Chin. Phys. Lett. 19 1309
[13] Chen Y P, Pierre E and Hou M Y 2012 Chin. Phys. Lett. 29 074501
[14] Cross M and Greenside H 2009 Pattern Formation and Dynamics in Nonequilibrium Systems (London: Cambridge University Press)
[15] Fall A et al 2010 Phys. Rev. Lett. 105 268303
[16] Brown E and Jaeger H M 2009 Phys. Rev. Lett. 103 086001
[17] Tan P et al 2010 Soft Matter 6 4800
[18] Wu C W and Conrad H 1997 Phys. Rev. E 56 5789
[19] Halsey T C 1992 Phys. Rev. Lett. 68 1519
[20] Zhang J W et al 2008 Phys. Rev. Lett. 101 194503
[21] Li C et al 2012 Soft Matter 8 5250
[22] Boyer F, Guazzelli é and Pouliquen O 2011 Phys. Rev. Lett. 107 188301
[23] Jones T B 1995 Electromechanics of Particles (London: Cambridge University Press)
[24] Sheng P and Wen W J 2010 Solid State Commun. 150 1023
[25] Doi M 2011 J. Phys.: Condens. Matter 23 284118
[26] Dhont J K G and Bries W J 2008 Rheol. Acta 47 257
Viewed
Full text


Abstract