Chin. Phys. Lett.  2013, Vol. 30 Issue (9): 090402    DOI: 10.1088/0256-307X/30/9/090402
GENERAL |
The Thermodynamical Behaviors of Kerr–Newman AdS Black Holes
A. Belhaj1,2, M. Chabab2, H. El Moumni2*, L. Medari2, M. B. Sedra3
1Département de Physique, Faculté Polydisciplinaire, Université Sultan Moulay Slimane, Béni Mellal, Morocco
2High Energy Physics and Astrophysics Laboratory, FSSM, Cadi Ayyad University, Marrakesh, Morocco
3 Université Ibn Tofail, Faculté des Sciences, Département de Physique, LHESIR, Kénitra, Morocco
Cite this article:   
A. Belhaj, M. Chabab, H. El Moumni et al  2013 Chin. Phys. Lett. 30 090402
Download: PDF(502KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We reconsider the study of critical behaviors of Kerr–Newman Anti-de Sitter (AdS) black holes in four dimensions. The study is made in terms of the moduli space parameterized by the charge Q and the rotation parameter a, relating the mass M of the black hole and its angular momentum J via the relation a =J/M. Specifically, we discuss such thermodynamical behaviors in the presence of a positive cosmological constant considered as a thermodynamic pressure and its conjugate quantity as a thermodynamic volume. The equation of state for a charged Reissner–Nordstrom AdS black hole predicts a critical universal number depending on the (Q,a) moduli space. In the vanishing limit of the a parameter, this prediction recovers the usual universal number in four dimensions. Then, we find the bounded region of the moduli space allowing the consistency of the model with real thermodynamical variables.
Received: 10 May 2013      Published: 21 November 2013
PACS:  04.70.Dy (Quantum aspects of black holes, evaporation, thermodynamics)  
  98.80.Cq (Particle-theory and field-theory models of the early Universe (including cosmic pancakes, cosmic strings, chaotic phenomena, inflationary universe, etc.))  
  05.70.Ce (Thermodynamic functions and equations of state)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/9/090402       OR      https://cpl.iphy.ac.cn/Y2013/V30/I9/090402
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
A. Belhaj
M. Chabab
H. El Moumni
L. Medari
M. B. Sedra
[1] Strominger V and Vafa C 1996 Phys. Lett. B 379 99
[2] Strominger A 1996 Phys. Lett. B 383 39
[3] Ferrara S, Kallosh R and Strominger A 1995 Phys. Rev. D 52 R5412
[4] Ferrara S and Kallosh R 1996 Phys. Rev. D 54 1514
[5] Belhaj A, Chabab M, El Moumni H and Sedra M B 2012 Chin. Phys. Lett. 29 100401
[6] Kubizňák D and Mann R B 2012 J. High Energy Phys. 1207 033
[7] Ma Z Z 2009 arXiv:0908.0357 [hep-th]
[8] Hawking S and Page D 1983 Commun. Math. Phys. 87 577
[9] Chamblin A, Emparan R, Johnson C and Myers R 1999 Phys. Rev. D 60 064018
[10] Chamblin A, Emparan R, Johnson C and Myers R 1999 Phys. Rev. D 60 104026
[11] Cvetic M, Gibbons G W, Kubiznak D and Pope C N 2011 Phys. Rev. D 84 024037
[12] Dolan B P 2011 Class. Quantum Grav. 28 125020
[13] DolanB P 2011 Class. Quantum Grav. 28 235017
[14] Dolan B P 2011 Phys. Rev. D 84 127503
[15] Gunasekaran S, Kubiznak D and Mann R b 2012 J. High Energy Phys. 1211 110
[16] Aliev A N 2007 Phys. Rev. D 75 084041
[17] Caldarelli M M, Cognola G and Klemm D 2000 Class. Quantum Grav. 17 399
Related articles from Frontiers Journals
[1] Qian Dong, M. A. Mercado Sanchez, Guo-Hua Sun, Mohamad Toutounji, Shi-Hai Dong. Tripartite Entanglement Measures of Generalized GHZ State in Uniform Acceleration[J]. Chin. Phys. Lett., 2019, 36(10): 090402
[2] Chi-Kun Ding. Gravitational Perturbations in Einstein Aether Black Hole Spacetime[J]. Chin. Phys. Lett., 2018, 35(10): 090402
[3] Chang-Qing Liu, Chi-Kun Ding, Ji-Liang Jing. Effects of Homogeneous Plasma on Strong Gravitational Lensing of Kerr Black Holes[J]. Chin. Phys. Lett., 2017, 34(9): 090402
[4] Mahamat Saleh, Bouetou Bouetou Thomas, Timoleon Crepin Kofane. Energy and Thermodynamics of the Quantum-Corrected Schwarzschild Black Hole[J]. Chin. Phys. Lett., 2017, 34(8): 090402
[5] Jun Liang. The $P$–$v$ Criticality of a Noncommutative Geometry-Inspired Schwarzschild-AdS Black Hole[J]. Chin. Phys. Lett., 2017, 34(8): 090402
[6] M. Azam, A. Aslam. Accretion onto the Magnetically Charged Regular Black Hole[J]. Chin. Phys. Lett., 2017, 34(7): 090402
[7] Xiao-Xiong Zeng, Xin-Yun Hu, Li-Fang Li. Effect of Phantom Dark Energy on Holographic Thermalization[J]. Chin. Phys. Lett., 2017, 34(1): 090402
[8] Jun-Jin Peng, Wen-Chang Xiang, Shao-Hong Cai. Abbott–Deser–Tekin Charge of Dilaton Black Holes with Squashed Horizons[J]. Chin. Phys. Lett., 2016, 33(08): 090402
[9] Belhaj A., Chabab M., El Moumni H., Masmar K., Sedra M. B.. On Hawking Radiation of 3D Rotating Hairy Black Holes[J]. Chin. Phys. Lett., 2015, 32(10): 090402
[10] MA Meng-Sen, ZHAO Ren. Notes on Phase Transition of Nonsingular Black Hole[J]. Chin. Phys. Lett., 2015, 32(03): 090402
[11] ZHANG Ming, YUE Rui-Hong, YANG Zhan-Ying. Critical Behavior of Black Holes in an Einstein–Maxwell Gravity with a Conformal Anomaly[J]. Chin. Phys. Lett., 2015, 32(02): 090402
[12] LAI Chu-Yu, CHEN Ju-Hua, WANG Yong-Jiu. The Motion of Spinning Particles in the Spacetime of a Black Hole with a Cosmic String Topological Defect[J]. Chin. Phys. Lett., 2014, 31(09): 090402
[13] HE Tang-Mei, YANG Jin-Bo, ZHANG Jing-Yi. Corrected Stefan–Boltzmann Law and Lifespan of a Black Hole[J]. Chin. Phys. Lett., 2014, 31(08): 090402
[14] Ahmad Sheykhi. Quasi-Topological Cosmology from Emergence of Cosmic Space[J]. Chin. Phys. Lett., 2014, 31(2): 090402
[15] FANG Heng-Zhong, ZHOU Kai-Hu. Emission of Phonons from a Rotating Sonic Black Hole[J]. Chin. Phys. Lett., 2014, 31(1): 090402
Viewed
Full text


Abstract