Chin. Phys. Lett.  2013, Vol. 30 Issue (9): 090302    DOI: 10.1088/0256-307X/30/9/090302
GENERAL |
Quantum Discord-Breaking Channels
YAO Chun-Mei1**, HE Zhi1, CHEN Zhi-Hua2, NIE Jian-Jun1
1College of Physics and Electronics, Hunan University of Arts and Science, Changde 415000
2Department of Science, Zhijiang College, Zhejiang University of Technology, Hangzhou 310024
Cite this article:   
YAO Chun-Mei, HE Zhi, CHEN Zhi-Hua et al  2013 Chin. Phys. Lett. 30 090302
Download: PDF(434KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Through comparisons with an entanglement breaking (EB) channel, we characterize the local quantum channels that destroy quantum correlations, especially for quantum discord, and give a detailed description of a discord-breaking (DB) channel. We prove that the quantum discord can be broken if and only if the local quantum channel is a commutativity-creating (CoC) channel. Then we show which kind of channels is a CoC channel, and address the relation between EB and DB channels. Furthermore we apply our results to three typical noise channels.
Received: 22 May 2013      Published: 21 November 2013
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.65.Db (Functional analytical methods)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/9/090302       OR      https://cpl.iphy.ac.cn/Y2013/V30/I9/090302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YAO Chun-Mei
HE Zhi
CHEN Zhi-Hua
NIE Jian-Jun
[1] Horodecki M, Shor Pe W and Ruskai M B 2003 Rev. Math. Phys. 15 629
[2] Ruskai M B 2003 Rev. Math. Phys. 15 643
[3] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
Henderson L and Vedral V 2001 J. Phys. A: Math. Theor. 34 6899
[4] Luo S 2008 Phys. Rev. A 77 042303
Ali A, Rau A R P and Alber G 2010 Phys. Rev. A 81 042105
[5] Streltsov A, Kampermann H and Bru? D 2011 Phys. Rev. Lett. 106 160401
Piani M, Gharibian S, Adesso G, Calsamiglia J, Horodecki P and Winter A 2011 Phys. Rev. Lett. 106 220403
[6] Datta A 2008 arXiv:0807.4490v1 [hep-ph]
[7] Daki? B, Vedral V and Brukner ? 2010 Phys. Rev. Lett. 105 190502
[8] Hu X, Fan H, Zhou D L and Liu W M 2012 Phys. Rev. A 85 032102
[9] Korbicz J K, Horodecki P and Horodecki R 2012 Phys. Rev. A 86 042319
[10] Streltsov A, Kampermann H and Bru? D 2011 Phys. Rev. Lett. 107 170502
[11] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) pp 378–386
[12] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[13] Luo S and Fu S 2010 Phys. Rev. A 82 034302
[14] Guo Y and Hou J 2013 J. Phys. A: Math. Theor. 46 155301
Related articles from Frontiers Journals
[1] Jian Li, Yang Zhou, and Qin Wang. Demonstration of Einstein–Podolsky–Rosen Steering with Multiple Observers via Sequential Measurements[J]. Chin. Phys. Lett., 2022, 39(11): 090302
[2] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 090302
[3] Shaowei Li, Daojin Fan, Ming Gong, Yangsen Ye, Xiawei Chen, Yulin Wu, Huijie Guan, Hui Deng, Hao Rong, He-Liang Huang, Chen Zha, Kai Yan, Shaojun Guo, Haoran Qian, Haibin Zhang, Fusheng Chen, Qingling Zhu, Youwei Zhao, Shiyu Wang, Chong Ying, Sirui Cao, Jiale Yu, Futian Liang, Yu Xu, Jin Lin, Cheng Guo, Lihua Sun, Na Li, Lianchen Han, Cheng-Zhi Peng, Xiaobo Zhu, and Jian-Wei Pan. Realization of Fast All-Microwave Controlled-Z Gates with a Tunable Coupler[J]. Chin. Phys. Lett., 2022, 39(3): 090302
[4] Heng-Xi Ji, Lin-Han Mo, and Xin Wan. Dynamics of the Entanglement Zero Modes in the Haldane Model under a Quantum Quench[J]. Chin. Phys. Lett., 2022, 39(3): 090302
[5] Yanbo Lou, Xiaoyin Xu, Shengshuai Liu, and Jietai Jing. Low-Noise Intensity Amplification of a Bright Entangled Beam[J]. Chin. Phys. Lett., 2021, 38(9): 090302
[6] Xin-Wei Zha , Min-Rui Wang, and Ruo-Xu Jiang . Constructing a Maximally Entangled Seven-Qubit State via Orthogonal Arrays[J]. Chin. Phys. Lett., 2020, 37(9): 090302
[7] Lin-Han Mo, Qiu-Lan Zhang, Xin Wan. Dynamics of the Entanglement Spectrum of the Haldane Model under a Sudden Quench *[J]. Chin. Phys. Lett., 0, (): 090302
[8] Lin-Han Mo, Qiu-Lan Zhang, Xin Wan. Dynamics of the Entanglement Spectrum of the Haldane Model under a Sudden Quench[J]. Chin. Phys. Lett., 2020, 37(6): 090302
[9] Qi-Cheng Tang, Wei Zhu. Critical Scaling Behaviors of Entanglement Spectra[J]. Chin. Phys. Lett., 2020, 37(1): 090302
[10] Qian Dong, M. A. Mercado Sanchez, Guo-Hua Sun, Mohamad Toutounji, Shi-Hai Dong. Tripartite Entanglement Measures of Generalized GHZ State in Uniform Acceleration[J]. Chin. Phys. Lett., 2019, 36(10): 090302
[11] Si-Yuan Liu, Feng-Lin Wu, Yao-Zhong Zhang, Heng Fan. Strong Superadditive Deficit of Coherence and Quantum Correlations Distribution[J]. Chin. Phys. Lett., 2019, 36(8): 090302
[12] Jie Zhou, Hui-Xian Meng, Jing-Ling Chen. Detecting Quantumness in the $n$-cycle Exclusivity Graphs[J]. Chin. Phys. Lett., 2019, 36(8): 090302
[13] Feng-Lin Wu, Si-Yuan Liu, Wen-Li Yang, Heng Fan. Construction of Complete Orthogonal Genuine Multipartite Entanglement State[J]. Chin. Phys. Lett., 2019, 36(6): 090302
[14] Wen-Bin He, Xi-Wen Guan. Exact Entanglement Dynamics in Three Interacting Qubits[J]. Chin. Phys. Lett., 2018, 35(11): 090302
[15] Meng Qin, Li Wang, Bili Wang, Xiao Wang, Zhong Bai, Yanbiao Li. Renormalization of Tripartite Entanglement in Spin Systems with Dzyaloshinskii–Moriya Interaction[J]. Chin. Phys. Lett., 2018, 35(10): 090302
Viewed
Full text


Abstract