Chin. Phys. Lett.  2013, Vol. 30 Issue (9): 090202    DOI: 10.1088/0256-307X/30/9/090202
GENERAL |
Synchronization of Colored Networks via Discrete Control
SUN Mei**, LI Dan-Dan, HAN Dun, JIA Qiang
Nonlinear Scientific Research Center, Jiangsu University, Zhenjiang 212013
Cite this article:   
SUN Mei, LI Dan-Dan, HAN Dun et al  2013 Chin. Phys. Lett. 30 090202
Download: PDF(472KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the synchronization problem of two colored networks via discrete control based on the Lyapunov stability theory. First, intermittent control is adopted to synchronize two edge-colored networks, and the sufficient condition connecting the control width, control period and the network topology is established for reaching synchronization. Then, an impulsive controller is designed to ensure two general colored networks in synchronization, and the relation among the impulsive interval, impulsive gain and the network topology for synchronization is also discovered. Finally, two numerical examples are provided to demonstrate and verify the theoretical results.
Received: 15 April 2013      Published: 21 November 2013
PACS:  02.30.Yy (Control theory)  
  89.75.-k (Complex systems)  
  05.45.-a (Nonlinear dynamics and chaos)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/9/090202       OR      https://cpl.iphy.ac.cn/Y2013/V30/I9/090202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SUN Mei
LI Dan-Dan
HAN Dun
JIA Qiang
[1] Ning B, Ren Q S and Zhao J Y 2012 Physica A 391 3061
[2] Meng Q K and Zhu J Y 2009 Chin. Phys. Lett. 26 086401
[3] Yu W W, Chen G R and Cao M 2011 IEEE Trans. Autom. Control 56 1436
[4] Liu Y R, Wang Z D and Liu X H 2012 Neurocomputing 94 46
[5] Liu Y R, Wang Z D and Liu X H 2012 Neural Process. Lett. 36 1
[6] Wu Z Y, Xu X J, Chen G R and Fu X C 2012 Chaos 22 043137
[7] Becu J M, Dah M, Manoussakis Y and Mendy G 2010 Eur. J. Comb. 31 442
[8] Wu B Y 2012 Discrete Optim. 9 50
[9] Fujita S Y and NakamigawaT 2008 Discrete Appl. Math. 156 3339
[10] Wang Y G and Desmedt Y 2011 Inf. Process. Lett. 111 634
[11] Sun M, Chen Y, Cao L and Wang X F 2012 Chin. Phys. Lett. 29 020503
[12] Zhong Q S, Bao J F and Yu Y B 2008 Chin. Phys. Lett. 25 2812
[13] Cai S M, Hao J J, He Q B and Liu Z R 2011 Phys. Lett. A 375 1965
[14] Song Q, Cao J D and Liu F 2010 Phys. Lett. A 374 544
Related articles from Frontiers Journals
[1] Peng-Ju Tang, Peng Peng, Xiang-Yu Dong, Xu-Zong Chen, Xiao-Ji Zhou. Implementation of Full Spin-State Interferometer[J]. Chin. Phys. Lett., 2019, 36(5): 090202
[2] Li Chen, Dong Yan, Li-Jun Song, Shou Zhang. Dynamics of Quantum Fisher Information in Homodyne-Mediated Feedback Control[J]. Chin. Phys. Lett., 2019, 36(3): 090202
[3] Ming Zhang, Zairong Xi, Tzyh-Jong Tarn. Robust Set Stabilization and Its Instances for Open Quantum Systems[J]. Chin. Phys. Lett., 2018, 35(9): 090202
[4] GUO Xiao-Yong, *, LI Jun-Min . Projective Synchronization of Complex Dynamical Networks with Time-Varying Coupling Strength via Hybrid Feedback Control[J]. Chin. Phys. Lett., 2011, 28(12): 090202
[5] LI Hai-Yan**, HU Yun-An . Backstepping-Based Synchronization Control of Cross-Strict Feedback Hyper-Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(12): 090202
[6] TANG Wen-Yan**, QU Zhi-Hua, GUO Yi . Analysis and Control of Two-Layer Frenkel–Kontorova Model[J]. Chin. Phys. Lett., 2011, 28(11): 090202
[7] XU Wei, YUAN Bo, AO Ping, ** . Construction of Lyapunov Function for Dissipative Gyroscopic System[J]. Chin. Phys. Lett., 2011, 28(5): 090202
[8] GUO Rong-Wei . Simultaneous Synchronization and Anti-Synchronization of Two Identical New 4D Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(4): 090202
[9] M. Mossa Al-Sawalha, M. S. M. Noorani. Chaos Anti-synchronization between Two Novel Different Hyperchaotic Systems[J]. Chin. Phys. Lett., 2008, 25(8): 090202
[10] HUANG Yu-Xin, YANG Yu-Jun, WU Bin, GUO Fu-Ming, ZHU Qi-Ren. Cyclic State Orientation of Polar Molecules Produced by a Train of Half-Cycle Pulse Clusters of a Long Repetition Period[J]. Chin. Phys. Lett., 2008, 25(4): 090202
[11] HUANG Yu-Xin, YANG Yu-Jun, ZHU Hong-Yu, WANG Li, WANG Hui, ZHU Qi-Ren. Field-Free Molecular Orientation Generated from Cyclic Rotational States by Using Two Trains of Half-Cycle Pulses[J]. Chin. Phys. Lett., 2007, 24(11): 090202
[12] CHI Fang-Ping, YANG Yu-Jun, HUANG Yu-Xin, ZHU Qi-Ren. Dynamic Mechanism of Sustainable Molecular Orientation Generated From Cyclic Rotational States[J]. Chin. Phys. Lett., 2006, 23(5): 090202
[13] CHI Fang-Ping, CHEN Ji-Gen, CHEN Gao, YANG Yu-Jun, DU Wen-He, ZHU Hai-Yan, ZHU Qi-Ren. Field-Free Orientation of Molecules with Small Permanent Dipole Moments by Using a Train of Half-Cycle Pulses[J]. Chin. Phys. Lett., 2005, 22(3): 090202
[14] GUAN Xin-Ping, HE Yan-Hui. Stabilizing Unstable Equilibrium Point of Unified Chaotic Systems with Unknown Parameter Using Sliding Mode Control[J]. Chin. Phys. Lett., 2004, 21(2): 090202
[15] GUAN Xin-Pin, HUA Chang-Chun. Synchronization of Uncertain Time Delay Chaotic Systems using the Adaptive Fuzzy Method[J]. Chin. Phys. Lett., 2002, 19(8): 090202
Viewed
Full text


Abstract