Chin. Phys. Lett.  2013, Vol. 30 Issue (9): 090201    DOI: 10.1088/0256-307X/30/9/090201
GENERAL |
Acceleration of the Stochastic Analytic Continuation Method via an Orthogonal Polynomial Representation of the Spectral Function
WU Quan-Sheng, WANG Yi-Lin, FANG Zhong, DAI Xi**
Beijing National Laboratory for Condensed Matter Physics, and Institute of Physics, Chinese Academy of Sciences, Beijing 100190
Cite this article:   
WU Quan-Sheng, WANG Yi-Lin, FANG Zhong et al  2013 Chin. Phys. Lett. 30 090201
Download: PDF(601KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Stochastic analytic continuation is an excellent numerical method for analytically continuing Green's functions from imaginary frequencies to real frequencies, although it requires significantly more computational time than the traditional MaxEnt method. We develop an alternate implementation of stochastic analytic continuation which expands the dimensionless field n(x) introduced by Beach using orthogonal polynomials. We use the kernel polynomial method (KPM) to control the Gibbs oscillations associated with truncation of the expansion in orthogonal polynomials. Our KPM variant of stochastic analytic continuation delivers improved precision at a significantly reduced computational cost.
Received: 08 May 2013      Published: 21 November 2013
PACS:  02.30.Mv (Approximations and expansions)  
  02.70.Hm (Spectral methods)  
  71.27.+a (Strongly correlated electron systems; heavy fermions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/9/090201       OR      https://cpl.iphy.ac.cn/Y2013/V30/I9/090201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WU Quan-Sheng
WANG Yi-Lin
FANG Zhong
DAI Xi
[1] Hirsch J E and Fye R M 1986 Phys. Rev. Lett. 56 2521
[2] Jarrell M 1992 Phys. Rev. Lett. 69 168
[3] Werner P, Comanac A, de' Medici L, Troyer M and Millis A J 2006 Phys. Rev. Lett. 97 076405
[4] Werner P and Millis A J 2006 Phys. Rev. B 74 155107
[5] Georges A, Kotliar G, Krauth W and Rozenberg M J 1996 Rev. Mod. Phys. 68 13
[6] Kotliar G, Savrasov S Y, Haule K, Oudovenko V S, Parcollet O and Marianetti C A 2006 Rev. Mod. Phys. 78 865
[7] Zhao J Z, Zhuang J N, Deng X Y, Bi Y, Cai L C, Fang Z and Dai X 2012 Chin. Phys. B 21 057106
[8] Zhuang J N, Liu Q M, Fang Z and Dai X 2010 Chin. Phys. B 19 87104
[9] Schüttler H B and Scalapino D J 1985 Phys. Rev. Lett. 55 1204
[10] Schüttler H B and Scalapino D J 1986 Phys. Rev. B 34 4744
[11] Sandvik A W 1998 Phys. Rev. B 57 10287
[12] Beach K S D 2004 arXiv:cond-mat/0403055 [cond-mat.str-el]
[13] Sylju?sen O F 2008 Phys. Rev. B 78 174429
[14] Fuchs S, Pruschke T and Jarrell M 2010 Phys. Rev. E 81 056701
[15] Wei?e A, Wellein G, Alvermann A and Fehske H 2006 Rev. Mod. Phys. 78 275
[16] Holzner A, Weichselbaum A, McCulloch I P, Schollw?ck U and von Delft J 2011 Phys. Rev. B 83 195115
[17] Boehnke L, Hafermann H, Ferrero M, Lechermann F and Parcollet O 2011 Phys. Rev. B 84 075145
[18] Huang L and Du L 2012 arXiv:1205.2791 [cond-mat.str-el]
[19] Jarrell M and Gubernatis J 1996 Phys. Rep. 269 133
[20] Gradshteyn I S, Ryzhik I M, Jeffrey A and Zwillinger D 2007 Table of Integrals (San Diego: Academic)
[21] Amadon B, Lechermann F, Georges A, Jollet F, Wehling T O and Lichtenstein A I 2008 Phys. Rev. B 77 205112
[22] Lechermann F, Georges A, Poteryaev A, Biermann S, Posternak M, Yamasaki A and Andersen O K 2006 Phys. Rev. B 74 125120
[23] Nekrasov I A, Held K, Keller G, Kondakov D E, Pruschke T, Kollar M, Andersen O K, Anisimov V I and Vollhardt D 2006 Phys. Rev. B 73 155112
[24] Pavarini E, Biermann S, Poteryaev A, Lichtenstein A I, Georges A and Andersen O K 2004 Phys. Rev. Lett. 92 176403
[25] Yoshida T, Tanaka K, Yagi H, Ino A, Eisaki H, Fujimori A and Shen Z X 2005 Phys. Rev. Lett. 95 146404
[26] Yoshida T, Hashimoto M, Takizawa T, Fujimori A, Kubota M, Ono K and Eisaki H 2010 Phys. Rev. B 82 085119
[27] Eguchi R, Kiss T, Tsuda S, Shimojima T, Mizokami T, Yokoya T, Chainani A, Shin S, Inoue I H, Togashi T, Watanabe S, Zhang C Q, Chen C T, Arita M, Shimada K, Namatame H and Taniguchi M 2006 Phys. Rev. Lett. 96 076402
[28] Aizaki S, Yoshida T, Yoshimatsu K, Takizawa M, Minohara M, Ideta S, Fujimori A, Gupta K, Mahadevan P, Horiba K, Kumigashira H and Oshima M 2012 Phys. Rev. Lett. 109 056401
Related articles from Frontiers Journals
[1] Nan-Xian Chen, Bo-Hua Sun. Note on Divergence of the Chapman–Enskog Expansion for Solving Boltzmann Equation [J]. Chin. Phys. Lett., 2017, 34(2): 090201
[2] PAN Feng, XIE Ming-Xia, SHI Chang-Liang, J. P. DRAAYER. Quasi-exactly Solvable Cases of the N-Dimensional Symmetric Quartic Anharmonic Oscillator[J]. Chin. Phys. Lett., 2012, 29(7): 090201
[3] Syed Tauseef Mohyud-Din**, Ahmet Yιldιrιm. Numerical Solution of the Three-Dimensional Helmholtz Equation[J]. Chin. Phys. Lett., 2010, 27(6): 090201
[4] DING Qi, ZHANG Hong-Qing. Analytic Solution for Magnetohydrodynamic Stagnation Point Flow towards a Stretching Sheet[J]. Chin. Phys. Lett., 2009, 26(10): 090201
[5] TU Tao, WANG Lin-Jun, HAO Xiao-Jie, GUO Guang-Can, GUO Guo-Ping. Renormalization Group Method for Soliton Evolution in a Perturbed KdV Equation[J]. Chin. Phys. Lett., 2009, 26(6): 090201
[6] MO Jia-Qi. A Variational Iteration Solving Method for a Class of Generalized Boussinesq Equations[J]. Chin. Phys. Lett., 2009, 26(6): 090201
[7] MO Jia-Qi. Approximate Solution of Homotopic Mapping to Solitary Wave for Generalized Nonlinear KdV System[J]. Chin. Phys. Lett., 2009, 26(1): 090201
[8] FU Jing-Li, FU Hao. A Field Method for Integrating Equations of Motion of Nonlinear Mechanico-Electrical Coupling Dynamical Systems[J]. Chin. Phys. Lett., 2008, 25(9): 090201
[9] WANG Feng-Jiao, YAN Xiao-Hong, WANG Deng-Long,. Small Amplitude Solitons in Bose--Einstein Condensates with External Perturbation[J]. Chin. Phys. Lett., 2008, 25(1): 090201
[10] TU Tao, HAO Xiao-Jie, GUO Guo-Ping, GUO Guang-Can. Two-Time Diffusion Process in the Porous Medium[J]. Chin. Phys. Lett., 2007, 24(8): 090201
[11] ZHANG Shun-Li, , WANG Peng-Zhou, QU Chang-Zheng. Approximate Generalized Conditional Symmetries for the Perturbed General KdV--Burgers Equation[J]. Chin. Phys. Lett., 2006, 23(10): 090201
[12] ZHANG Shun-Li, , QU Chang-Zheng. Approximate Generalized Conditional Symmetries for the Perturbed Nonlinear Diffusion--Convection Equations[J]. Chin. Phys. Lett., 2006, 23(3): 090201
[13] HOU Guang, HUANG Min-Xin, ZHANG Yong-De,. Quantum Multiple Access Channel[J]. Chin. Phys. Lett., 2002, 19(1): 090201
Viewed
Full text


Abstract