?-Dressing Method for the Sasa–Satsuma Equation with Self-Consistent Sources" /> ?-Dressing Method for the Sasa–Satsuma Equation with Self-Consistent Sources" /> ?-Dressing Method for the Sasa–Satsuma Equation with Self-Consistent Sources" />
Chin. Phys. Lett.  2013, Vol. 30 Issue (8): 080204    DOI: 10.1088/0256-307X/30/8/080204
GENERAL |
The ?-Dressing Method for the Sasa–Satsuma Equation with Self-Consistent Sources
ZHU Jun-Yi**, GENG Xian-Guo
School of Mathematics and Statistics, Zhengzhou University, Zhengzhou 450001
Cite this article:   
ZHU Jun-Yi, GENG Xian-Guo 2013 Chin. Phys. Lett. 30 080204
Download: PDF(482KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The dressing method, based on the local 3×3 matrix ?-problem, is extended to study the Sasa–Satsuma equation with self-consistent sources. The explicit solutions, including one-soliton and two-soliton solutions, are given by virtue of the properties of the Cauchy matrix.
Received: 15 May 2013      Published: 21 November 2013
PACS:  02.30.Ik (Integrable systems)  
  03.65.Nk (Scattering theory)  
  05.45.Yv (Solitons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/8/080204       OR      https://cpl.iphy.ac.cn/Y2013/V30/I8/080204
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHU Jun-Yi
GENG Xian-Guo
[1] Sasa N and Satsuma J 1991 J. Phys. Soc. Jpn. 60 409
[2] Trulsen K and Dysthe K B 1996 Wave Motion 24 281
[3] Sedletskii Y V 2003 J. Exp. Theor. Phys. 97 180
[4] Slunyaev A V 2005 J. Exp. Theor. Phys. 101 926
[5] Potasek M J 1991 Phys. Lett. A 154 449
[6] Hasegawa A and Kodama Y 1995 Solitons in Optical Communications (Oxford: Clarendon)
[7] Agrawal G P 1989 Nonlinear Fiber Optics (San Diego: Academic)
[8] Tasgal R S and Potasek M J 1992 J. Math. Phys. 33 1208
[9] Kaup D J and Yang J K 2009 Inverse Probl. 25 105010
[10] Yang J K and Kaup D J 2009 J. Math. Phys. 50 023504
[11] Sasa N and Satsuma J 1993 J. Phys. Soc. Jpn. 62 1153
[12] Ohta Y 2010 AIP Conf. Proc. 1212 114
[13] Ghosh S, Kundu A and Nandy S 1999 J. Math. Phys. 40 1993
[14] Leon J and Latifi A 1990 J. Phys. A: Math. Gen. 23 1385
[15] Mel'nikov V K 1992 Inverse Probl. 8 133
[16] Doktorov E V and Vlasov R A 1983 Opt. Acta 30 223
[17] Claude C, Latifi A and Leon J 1991 J. Math. Phys. 32 3321
[18] Mel'nikov V K 1989 Commun. Math. Phys. 126 201
[19] Mel'nikov V K 1990 Inverse Probl. 6 233
[20] Zeng Y B, Ma W X and Lin R L 2000 J. Math. Phys. 41 5453
[21] Zeng Y B, Ma W X and Shao Y J 2001 J. Math. Phys. 42 2113
[22] Hu X B 1996 Chaos Solitons Fractals 7 211
[23] Zhang D J 2002 J. Phys. Soc. Jpn. 71 2649
[24] Wang H Y, Hu X B and Tam H W 2007 J. Phys. Soc. Jpn. 76 024007
[25] Zhu J Y and Geng X G 2013 J. Phys. A: Math. Theor. 46 035204
[26] Zhu J Y and Geng X G 2013 arXiv:1304.4096 [nlin.SI]
[27] Manakov S V 1973 Zh. Eksp. Teor. Fiz 65 1392
Related articles from Frontiers Journals
[1] S. Y. Lou, Man Jia, and Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 080204
[2] Wen-Xiu Ma. Matrix Integrable Fourth-Order Nonlinear Schr?dinger Equations and Their Exact Soliton Solutions[J]. Chin. Phys. Lett., 2022, 39(10): 080204
[3] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 080204
[4] Xiao-Man Zhang, Yan-Hong Qin, Li-Ming Ling, and Li-Chen Zhao. Inelastic Interaction of Double-Valley Dark Solitons for the Hirota Equation[J]. Chin. Phys. Lett., 2021, 38(9): 080204
[5] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 080204
[6] Yusong Cao and Junpeng Cao. Exact Solution of a Non-Hermitian Generalized Rabi Model[J]. Chin. Phys. Lett., 2021, 38(8): 080204
[7] Zequn Qi , Zhao Zhang , and Biao Li. Space-Curved Resonant Line Solitons in a Generalized $(2+1)$-Dimensional Fifth-Order KdV System[J]. Chin. Phys. Lett., 2021, 38(6): 080204
[8] Wei Wang, Ruoxia Yao, and Senyue Lou. Abundant Traveling Wave Structures of (1+1)-Dimensional Sawada–Kotera Equation: Few Cycle Solitons and Soliton Molecules[J]. Chin. Phys. Lett., 2020, 37(10): 080204
[9] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 080204
[10] Danda Zhang, Da-Jun Zhang, Sen-Yue Lou. Lax Pairs of Integrable Systems in Bidifferential Graded Algebras[J]. Chin. Phys. Lett., 2020, 37(4): 080204
[11] Yu-Han Wu, Chong Liu, Zhan-Ying Yang, Wen-Li Yang. Breather Interaction Properties Induced by Self-Steepening and Space-Time Correction[J]. Chin. Phys. Lett., 2020, 37(4): 080204
[12] Bao Wang, Zhao Zhang, Biao Li. Soliton Molecules and Some Hybrid Solutions for the Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2020, 37(3): 080204
[13] Zhao Zhang, Shu-Xin Yang, Biao Li. Soliton Molecules, Asymmetric Solitons and Hybrid Solutions for (2+1)-Dimensional Fifth-Order KdV Equation[J]. Chin. Phys. Lett., 2019, 36(12): 080204
[14] Zhou-Zheng Kang, Tie-Cheng Xia. Construction of Multi-soliton Solutions of the $N$-Coupled Hirota Equations in an Optical Fiber[J]. Chin. Phys. Lett., 2019, 36(11): 080204
[15] Yong-Shuai Zhang, Jing-Song He. Bound-State Soliton Solutions of the Nonlinear Schr?dinger Equation and Their Asymmetric Decompositions[J]. Chin. Phys. Lett., 2019, 36(3): 080204
Viewed
Full text


Abstract