NUCLEAR PHYSICS |
|
|
|
|
1S0 Nucleon Superfluidity in Neutron Star Matter |
XU Yan1**, LIU Guang-Zhou2, LIU Cheng-Zhi1, FAN Cun-Bo1, HAN Xing-Wei1, ZHU Ming-Feng2, WANG Hong-Yan3, ZHANG Xiao-Jun1 |
1Changchun Observatory, National Astronomical Observatories, Chinese Academy of Sciences, Changchun 130117 2Center for Theoretical Physics, Jilin University, Changchun 130012 3College of Physics, Beihua University, Jilin 132013
|
|
Cite this article: |
XU Yan, LIU Guang-Zhou, LIU Cheng-Zhi et al 2013 Chin. Phys. Lett. 30 062101 |
|
|
Abstract We investigate the nucleon superfluidity in the 1S0 channel in neutron star matter using the relativistic mean field theory and the BCS theory. We discuss particularly the influence of the isovector scalar interaction which is considered by exchanging δ meson on the nucleon superfluidity. It is found that the δ meson leads to a growth of the nucleon 1S0 pairing energy gaps in a middle density range of the existing nucleon superfluidity. In addition, when the density ρB>0.36 fm?3, the proton 1S0 pairing energy gap obviously decreases. The density range of the proton 1S0 superfluidity is narrowed due to the presence of δ mesons. In our results, the δ meson not only changes the EOS and bulk properties but also changes the cooling properties of neutron stars.
|
|
Received: 01 April 2013
Published: 31 May 2013
|
|
|
|
|
|
[1] Zuo W, Li Z H, Lu G C, Li J Q et al 2004 Phys. Lett. B 595 44 [2] Zuo W and Lombardo U 2010 AIP Conf. Proc. 1235 235 [3] Tanigawa T, Matsuzaki M and Chiba S 2004 Phys. Rev. C 70 065801 [4] Gnedin O Y and Yakovlev D G 1993 Astron. Lett. 19 104 [5] Kaminker A D, Yakovlev D G et al 2002 Astron. Astrophys. 383 1076 [6] Yakovlev D G, Gnedin O Y et al 2005 Nucl. Phys. A 752 590 [7] Yakovlev D G and Pethick C J 2004 Annu. Rev. Astron. Astrophys. 42 169 [8] Yakovlev D G, Kaminker A D, Gnedin O Y and Haensel P 2001 Phys. Rep. 354 1 [9] Xu Y, Liu G Z, Wu Y R, Zhu M F, Yu Z, Wang H Y and Zhao E G 2012 Plasma Sci. Technol. 14 375 [10] Baldo M, Cugnon J, Lejeune A and Lombardo U 1990 Nucl. Phys. A 515 409 [11] Lombardo U, Schuck P and Zuo W 2001 Phys. Rev. C 64 021301 [12] Shen C, Lombardo U and Schuck P 2005 Phys. Rev. C 71 054301 [13] Cao L G, Lombardo U and Schuck P 2006 Phys. Rev. C 74 064301 [14] Zuo W, Li Z H and Lu G C 2004 Chin. Phys. B 13 1848 [15] Haensel P and Gnedin O Y 1994 Astron. Astrophys. 290 458 [16] Gnedin O Y, Yakovlev D G et al 1994 Astron. Lett. 20 409 [17] Yakovlev D G, Gnedin O Y et al 2008 AIP Conf. Proc. 983 379 [18] Yakovlev D G, Levenfish K P et al 1999 Phys. Usp. 42 737 [19] Shternin P S, Yakovlev D G et al 2011 Mon. Not. R. Astron. Soc. 412 108 [20] Chen W, Lam Y Y, Wen D H and Liu L G 2006 Chin. Phys. Lett. 23 271 [21] Glendenning N K 1985 Astrophys. J. 293 470 [22] Glendenning N K and Moszkowski S A 1991 Phys. Rev. Lett. 67 2414 [23] Bednarek I and Manka R 2005 J. Phys. G: Nucl. Part. Phys. 31 1009 [24] Yang F and Shen H 2008 Phys. Rev. C 77 025801 [25] Wang Y N and Shen H 2010 Phys. Rev. C 81 025801 [26] Ding W B, Liu G Z, Zhu M F, Yu Z, Xu Y and Zhao E G 2010 Commun. Theor. Phys. 54 500 [27] Xu Y, Liu G Z, Wang H Y, Ding W B and Zhao E G 2012 Chin. Phys. Lett. 29 059701 [28] Mi A J, Zuo W, Burgio G et al 2007 Chin. Phys. B 16 1934 [29] Kubis S and Kutschera M 1997 Phys. Lett. B 399 191 [30] Liu B, Greco V et al 2002 Phys. Rev. C 65 045201 [31] Menezes D P and Providência C 2004 Phys. Rev. C 70 058801 [32] Liu B, Guo H et al 2005 Eur. Phys. J. A 25 293 [33] Yu Z, Liu G Z, Zhu M F, Xu Y and Zhao E G 2009 Chin. Phys. Lett. 26 022601 [34] Nishizaki S, Takatsuka T, Yahagi N, Hiura J 1991 Prog. Theor. Phys. 86 853 [35] Sprung D W L and Banerjee P K 1971 Nucl. Phys. A 168 273 [36] Amundsen L and ?stgaard E 1985 Nucl. Phys. A 437 487 [37] Wambach J, Ainsworth T L and Pines D 1993 Nucl. Phys. A 555 128 [38] Takatsuka T, Tamagaki R 2004 Nucl. Phys. A 738 387 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|