CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
The Effect of an Incident Electron Beam on the I–V Characteristics of a Au-ZnSe Nanowire-Au Nanostructure |
TAN Yu1, WANG Yan-Guo2** |
1 Science College, Hunan Agricultural University, Changsha 410128 2Beijing Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P. O. Box 603, Beijing 100190
|
|
Cite this article: |
TAN Yu, WANG Yan-Guo 2013 Chin. Phys. Lett. 30 047901 |
|
|
Abstract In order to the modify electron transport property of a metal-semiconductor nanowire(NW)-metal (M-S-M) nanostructure, the effect of high-energy electron irradiation on the current-voltage (I–V) characteristics of M-S-M nanostructure is investigated by in situ transmission electron microscopy. Experimentally measured I–V characteristics of an M-S-M nanostructure can be obviously modified under electron beam irradiation. The current increases rapidly due to increase of the carrier densities resulting from the electron-hole pair excitation in the NW irradiated by the electron beam. If the electron beam is focused on the NW (M-S) nanocontact, the electrons in the Au electrode are excited to higher energy states above the height of the Schottky barrier that becomes transparent to the conduction electrons. As a result, the nonlinear to linear I–V characteristics can be observed. The experimentally revealed I–V characteristics corresponding to transformation from the rectification to Ohm strongly suggest that the intrinsic transport property of the M-S nanocontact can be completely modified by irradiation of the high-energy electron beam.
|
|
Received: 25 December 2012
Published: 28 April 2013
|
|
PACS: |
79.70.+q
|
(Field emission, ionization, evaporation, and desorption)
|
|
68.37.Hk
|
(Scanning electron microscopy (SEM) (including EBIC))
|
|
81.07.De
|
(Nanotubes)
|
|
|
|
|
[1] Wang Y N, Chi J H, Banerjee K, Ruetzmacher D, Schaepers T and Lu J G 2011 J. Mater. Chem. 21 2459 [2] Limbach F, Hauswald C, Laehnemann J, Woelz M, Brandt O, Trampert A, Hanke M, Jahn U, Calarco R and Geelhaar L, Riechert H 2012 Nanotechnology 23 465301 [3] Chen Y J, Xue X Y, Wang Y G and Wang T H 2005 Appl. Phys. Lett. 87 233503 [4] Gekhtman D, Zhang Z B, Adderton D, Dresselhaus M S and Dresselhaus G 1999 Phys. Rev. Lett. 82 3887 [5] Kwon G, Chu H, Yoo J, Kim H, Han C, Chung C, Lee J and Lee H 2012 Nanotechnology 23 185307 [6] Venkataraman L and Lieber C M 1999 Phys. Rev. Lett. 83 5334 [7] Puyoo E, Grauby S, Rampnoux J M, Rouviere E and Dilhaire S 2011 J. Appl. Phys. 109 024302 [8] Zhang Z Y, Yao K, Liu Y Jin C H, Liang X L Chen Q and Peng L M 2007 Adv. Funct. Mater. 17 2478 [9] Tan Y and Wang Y G 2013 Chin. Phys. Lett. 30 017901 [10] Wang Y G, Zhang Q L, Wang T H, Han W and Zhou S X 2011 J. Phys. D: Appl. Phys. 44 125301 [11] Zhang Z Y, Jin C H, Liang X L, Chen Q and Peng L M 2006 Appl. Phys. Lett. 88 073102 [12] Wang D W, Lu J G, Otten C J and Buhro W E 2003 Appl. Phys. Lett. 83 5280 [13] Bhushan B 2004 Handbook of Nanotechnology (Berlin: Springer) [14] Zeng Y P, Wang Y G, Qu B H and Yu H C 2012 Chin. Phys. Lett. 29 088105 [15] Wang Y G, Zou B S, Wang T H, Wang N, Cai Y, Chan Y F and Zhou S X 2006 Nanotechnology 17 2420 [16] Blomfield C J, Dharmadasa I M, Prior K A and Cavenett B C 1996 J. Cryst. Growth 159 727 [17] M?nch W 2004 Electronic Properties of Semiconductor Interfaces (Berlin: Springer) [18] Yu P Y and Cardona M 2005 Fundamentals of Semiconductors (Heidelberg: Springer) [19] Tan Y and Wang Y G 2013 Chin. Phys. Lett. 30 017902 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|