Chin. Phys. Lett.  2013, Vol. 30 Issue (4): 047201    DOI: 10.1088/0256-307X/30/4/047201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Novel Transport Properties in Monolayer Graphene with Velocity Modulation
SUN Li-Feng1, FANG Chao1**, LIANG Tong-Xiang2
1Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084
2Beijing Key Laboratory of Fine Ceramics, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084
Cite this article:   
SUN Li-Feng, FANG Chao, LIANG Tong-Xiang 2013 Chin. Phys. Lett. 30 047201
Download: PDF(565KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the transport properties of Dirac fermions through velocity-modulation structures, with the Fermi velocity inside the barriers larger than the one outside. It is shown that the transmission exhibits pseudo-periodicity with the incident angle below the critical transmission angle, but attenuates exponentially in the opposite situation. It is found that in the transmission, (1) the pseudo-periodicity turns to periodicity with suitable modulation; (2) line-type peaks appear in the exponential attenuation region for multiple velocity barriers; (3) peak splitting occurs with the number of the velocity barriers increasing. Some sharp oscillations with the falling-edge slopes close to infinity exist in the conductance profile. These novel transport properties suggest significant potential applications in graphene-based devices.
Received: 24 January 2013      Published: 28 April 2013
PACS:  72.80.Vp (Electronic transport in graphene)  
  73.23.Ad (Ballistic transport)  
  73.40.Gk (Tunneling)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/4/047201       OR      https://cpl.iphy.ac.cn/Y2013/V30/I4/047201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SUN Li-Feng
FANG Chao
LIANG Tong-Xiang
[1] Beenakker C W 2008 Rev. Mod. Phys. 80 1337
[2] Neto A H C, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[3] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[4] Tworzydlo J, Trauzettel B, Titov M, Rycerz A and Beenakker C W J 2006 Phys. Rev. Lett. 96 246802
[5] Peres N M R 2010 Rev. Mod. Phys. 82 2673
[6] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[7] Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
[8] Gusynin V P and Sharapov S G 2005 Phys. Rev. Lett. 95 146801
[9] Mccann E and Falko V I 2006 Phys. Rev. Lett. 96 086805
[10] Zheng Y and Ando T 2002 Phys. Rev. B 65 245420
[11] Novoselov K S, Mccann E, Morozov S V F, Katsnelson M I, Zeitler U, Jiang D, Schedin F and Geim A K 2006 Nat. Phys. 2 177
[12] Zhang L Y, Zhang Y, Camacho J, Khodas M and Zaliznyak I 2011 Nat. Phys. 7 953
[13] Taychatanapat T, Watanabe K, Taniguchi T and Jarillo H P 2011 Nat. Phys. 7 621
[14] Zhang Y, Small J P, Amori M E S and Kim P 2005 Phys. Rev. Lett. 94 176803
[15] Katsnelson M I 2006 Eur. Phys. J. B 52 151
[16] Hu S J, Du W, Zhang G P, Gao M, Lu Z Y and Wang X Q 2012 Chin. Phys. Lett. 29 057201
[17] Beenakker C W J 2006 Phys. Rev. Lett. 97 067007
[18] Bhattacharjee S and Sengupta K 2006 Phys. Rev. Lett. 97 217001
[19] Schwierz F 2010 Nat. Nanotechnol. 5 487
[20] Schedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelson M I and Novoselov K S 2007 Nat. Mater. 6 652
[21] Patil A, Lopez G, Foxe M, Childres I, Roecker C, Boguski J, Jovanovic I and Chen Y P 2010 IEEE Nuclear Science Symposium and Medical Imaging Conference (Knoxville TN, USA, 30 October–6 November 2010)
[22] Katsnelson M I, Novoselov K S and Geim A K 2006 Nat. Phys. 2 620
[23] Tapasztó L, Dobrik G, Nemes I, Vertesy P G, Lambin P and Biró L P 2008 Phys. Rev. B 78 233407
[24] Raoux A, Polini M, Asgari R, Hamilton A R, Fazio R and MacDonald A H 2010 Phys. Rev. B 81 073407
[25] Gibertini M, Singha A, Pellegrini V and Polini M 2009 Phys. Rev. B 79 241406(R)
[26] Concha A and Te?anovi? Z 2010 Phys. Rev. B 82 033413
[27] Yuan J H, Cheng Z, Zeng Q J, Zhang J P and Zhang J J 2011 J. Appl. Phys. 110 103706
[28] Krstaji? P M and Vasilopoulos P 2011 J. Phys.: Condens. Matter 23 135302
[29] Yuan J H, Zhang J J, Zeng Q J, Zhang J P and Cheng Z 2011 Physica B 406 4214
[30] Yuan J H, Zhang J J, Zeng Q J, Zhang J P and Cheng Z 2011 Commun. Theor. Phys. 56 1135
[31] Pellegrino F M D, Angilella G G N and Pucci R 2011 Phys. Rev. B 84 195404
[32] Pellegrino F M D, Angilella G G N and Pucci R 2012 High Press. Res. 1 18
[33] Barbier M, Peeters F M, Vasilopoulos P and Pereira J M 2008 Phys. Rev. B 77 115446
[34] Sun L F and Guo Y 2011 J. Appl. Phys. 109 123719
Related articles from Frontiers Journals
[1] Lijun Zhu, Lin Li, Xiaodong Fan, Zhongniu Xie, and Changgan Zeng. Effect of Boundary Scattering on Magneto-Transport Performance in BN-Encapsulated Graphene[J]. Chin. Phys. Lett., 2022, 39(9): 047201
[2] Wen-Han Dong, De-Liang Bao, Jia-Tao Sun, Feng Liu, and Shixuan Du. Manipulation of Dirac Fermions in Nanochain-Structured Graphene[J]. Chin. Phys. Lett., 2021, 38(9): 047201
[3] Hang Yang, Wei Chen, Ming-Yang Li, Feng Xiong, Guang Wang, Sen Zhang, Chu-Yun Deng, Gang Peng, and Shi-Qiao Qin. Ultrathin Al Oxide Seed Layer for Atomic Layer Deposition of High-$\kappa$ Al$_{2}$O$_{3}$ Dielectrics on Graphene[J]. Chin. Phys. Lett., 2020, 37(7): 047201
[4] Ran Tao, Lin Li, Li-Jun Zhu, Yue-Dong Yan, Lin-Hai Guo, Xiao-Dong Fan, and Chang-Gan Zeng. Giant-Capacitance-Induced Wide Quantum Hall Plateaus in Graphene on LaAlO$_{3}$/SrTiO$_{3}$ Heterostructures[J]. Chin. Phys. Lett., 2020, 37(7): 047201
[5] Ashkan Horri, Rahim Faez. Full-Quantum Simulation of Graphene Self-Switching Diodes[J]. Chin. Phys. Lett., 2019, 36(6): 047201
[6] Jian-Ying Chen, Lu Liu, Chun-Xia Li, Jing-Ping Xu. Chemical Vapor Deposition Growth of Large-Area Monolayer MoS$_{2}$ and Fabrication of Relevant Back-Gated Transistor[J]. Chin. Phys. Lett., 2019, 36(3): 047201
[7] Yu-Bing Wang, Wei-Hong Yin, Qin Han, Xiao-Hong Yang, Han Ye, Shuai Wang, Qian-Qian Lv, Dong-Dong Yin. The Nonlinear Electronic Transport in Multilayer Graphene on Silicon-on-Insulator Substrates[J]. Chin. Phys. Lett., 2017, 34(6): 047201
[8] Yan-Hua Li, Yong-Jian Xiong. Single-Parameter Quantum Pumping in Graphene Nanoribbons with Staggered Sublattice Potential[J]. Chin. Phys. Lett., 2017, 34(5): 047201
[9] Ze-Zhao He, Ke-Wu Yang, Cui Yu, Qing-Bin Liu, Jing-Jing Wang, Xu-Bo Song, Ting-Ting Han, Zhi-Hong Feng, Shu-Jun Cai. Comparative Study of Monolayer and Bilayer Epitaxial Graphene Field-Effect Transistors on SiC Substrates[J]. Chin. Phys. Lett., 2016, 33(08): 047201
[10] Tian-Yi Han, Guang-Wei Deng, Da Wei, Guo-Ping Guo. Multiplexing Read-Out of Charge Qubits by a Superconducting Resonator[J]. Chin. Phys. Lett., 2016, 33(04): 047201
[11] Sedighe Salimian, Mohammad Esmaeil Azim Araghi. Effect of Residual Charge Carrier on the Performance of a Graphene Field Effect Transistor[J]. Chin. Phys. Lett., 2016, 33(01): 047201
[12] HE Ze-Zhao, YANG Ke-Wu, YU Cui, LI Jia, LIU Qing-Bin, LU Wei-Li, FENG Zhi-Hong, CAI Shu-Jun. Improvement of Metal-Graphene Ohmic Contact Resistance in Bilayer Epitaxial Graphene Devices[J]. Chin. Phys. Lett., 2015, 32(11): 047201
[13] FAN Tian-Ju, YUAN Chun-Qiu, TANG Wei, TONG Song-Zhao, LIU Yi-Dong, HUANG Wei, MIN Yong-Gang, Arthur J. Epstein. A Novel Method of Fabricating Flexible Transparent Conductive Large Area Graphene Film[J]. Chin. Phys. Lett., 2015, 32(07): 047201
[14] YI Ming-Dong, GUO Jia-Lin, HU Bo, XIA Xian-Hai, FAN Qu-Li, XIE Ling-Hai, HUANG Wei. Memory Behaviors Based on ITO/Graphene Oxide/Al Structure[J]. Chin. Phys. Lett., 2015, 32(07): 047201
[15] LUO Wen-Gang, WANG Hua-Feng, CAI Kai-Ming, HAN Wen-Peng, TAN Ping-Heng, HU Ping-An, WANG Kai-You. Synthesis of Homogenous Bilayer Graphene on Industrial Cu Foil[J]. Chin. Phys. Lett., 2014, 31(06): 047201
Viewed
Full text


Abstract