Chin. Phys. Lett.  2013, Vol. 30 Issue (4): 047101    DOI: 10.1088/0256-307X/30/4/047101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
An Effective Description of Electron Correlation in the Green Function Approach
LIU Yu-Liang**
Department of Physics, Renmin University of China, Beijing 100872
Cite this article:   
LIU Yu-Liang 2013 Chin. Phys. Lett. 30 047101
Download: PDF(461KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Beyond the usual many body perturbation theory, with the eigenfunctional theory, we directly calculate the correlation function produced by the Coulomb interaction of electrons in the equation of one-electron Green function, and give the general expression of the non-local effective interaction potential in a Hartree-type potential, which is absent in all previous many body perturbation theories. This effective interaction potential originates from the quantum many body effect of the system, and it cannot be obtained directly by the usual perturbation expression approach. Moreover, using theoretical models, we demonstrate that this effective interaction potential can be used to characterize the electron correlation strength of the system.
Received: 10 January 2013      Published: 28 April 2013
PACS:  71.10.-w (Theories and models of many-electron systems)  
  71.27.+a (Strongly correlated electron systems; heavy fermions)  
  75.10.Jm (Quantized spin models, including quantum spin frustration)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/4/047101       OR      https://cpl.iphy.ac.cn/Y2013/V30/I4/047101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Yu-Liang
[1] Anderson P W 1987 Science 235 1196
Anderson P W 1997 The Theory of Superconductivity in the High-Tc Cuprates (Princeton, NJ: Princeton University)
Zhang F C and Rice T M 1988 Phys. Rev. B 37 3759
Lee P A, Nagaosa N and Wen X G 2006 Rev. Mod. Phys. 78 17
[2] Mahan G D 2007 Many-Particle Physics 3rd edn (New York: Springer-Verlag) chap 5
[3] Negele J W and Orland H 1988 Quantum Many-Particle System (Cambridge: Addison-Wesley)
[4] Bethe H 1931 Z. Phys. 71 205
Lieb E L and Wu F Y 1968 Phys. Rev. Lett. 20 1445
[5] Luther A and Peschel I 1974 Phys. Rev. B 9 2911
Haldane F D M 1981 J. Phys. C 14 2585
Sólyom J 1979 Adv. Phys. 28 201
Emery V J 1979 Highly Conducting One-Dimensional Solids ed Devreese J T (New York: Plenum)
[6] Landau L D 1955 Sov. Phys. JETP 3 920
Landau L D 1957 Sov. Phys. JETP 5 101
Landau L D 1959 Sov. Phys. JETP 8 70
[7] Nozières P 1974 Theory of Interacting Fermi System (Cambridge: Addison-Wesley)
[8] Hedin L 1965 Phys. Rev. 139 A796
Hedin L and Lundqvist S 1970 Solid State Phys. 23 1
Hybertsen M S and Louie S G 1986 Phys. Rev. B 34 5390
[9] Aryasetiawan F and Gunnarsson O 1995 Phys. Rev. Lett. 74 3221
[10] Onida G, Reining L and Rubio A 2002 Rev. Mod. Phys. 74 601
[11] Liu Y L 2002 Int. J. Mod. Phys. B 16 4127
Liu Y L 2005 Phys. Rev. B 71 014404
[12] Martin P C and Schwinger J 1959 Phys. Rev. 115 1342
[13] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
[14] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[15] Liu Y L 2005 Phys. Rev. B 72 045123
[16] Nozières P and De Dominicis C T 1969 Phys. Rev. 178 1097
Related articles from Frontiers Journals
[1] Kun Jiang. Correlation Renormalized and Induced Spin-Orbit Coupling[J]. Chin. Phys. Lett., 2023, 40(1): 047101
[2] Yunchao Hao, Gaopei Pan, Kai Sun, Zi Yang Meng, and Yang Qi. Superconductivity near the (2+1)-Dimensional Ferromagnetic Quantum Critical Point[J]. Chin. Phys. Lett., 2022, 39(9): 047101
[3] Yanting Li , Bixia Gao , Qiyu Wang , Juan Zhang , and Qiaoni Chen. Coexistence of Charge Order and Antiferromagnetic Order in an Extended Periodic Anderson Model[J]. Chin. Phys. Lett., 2021, 38(8): 047101
[4] Chuang Chen, Xiao Yan Xu, Yang Qi, Zi Yang Meng. Metal to Orthogonal Metal Transition[J]. Chin. Phys. Lett., 2020, 37(4): 047101
[5] Pengfei Suo, Li Mao, Hongxing Xu. Quantization Scheme of Surface Plasmon Polaritons in Two-Dimensional Helical Liquids[J]. Chin. Phys. Lett., 2020, 37(1): 047101
[6] Ru Zheng, Rong-Qiang He, Zhong-Yi Lu. An Anderson Impurity Interacting with the Helical Edge States in a Quantum Spin Hall Insulator[J]. Chin. Phys. Lett., 2018, 35(6): 047101
[7] Yuting Hu, Yidun Wan, Yong-Shi Wu. Boundary Hamiltonian Theory for Gapped Topological Orders[J]. Chin. Phys. Lett., 2017, 34(7): 047101
[8] XU Yuan-Hui, LIU Hui-Yun, HAO Xian-Feng, CHEN Rong-Na, GAO Fa-Ming. First Principles Study on Mechanical Properties of Superhard α-Ga Boron[J]. Chin. Phys. Lett., 2015, 32(02): 047101
[9] QIU Ping-Yi. First-principles Prediction for Mechanical and Optical Properties of Al3BC3[J]. Chin. Phys. Lett., 2014, 31(06): 047101
[10] CHEN Bao-Jun, TANG Zhen-An, JU Yan-Jie. A Numerical Method for Modeling the Effects of Irregular Shape on Interconnect Resistance[J]. Chin. Phys. Lett., 2014, 31(05): 047101
[11] YU Zhi-Ming, LIU Yu-Liang. A New Perspective to Study the Correlation Effect of the Three-Dimensional Electron Gas[J]. Chin. Phys. Lett., 2014, 31(1): 047101
[12] WU Li-Juan, ZHANG Wen-Tong, ZHANG Bo, LI Zhao-Ji. A Novel Silicon-on-Insulator Super-Junction Lateral-Double-Diffused Metal-Oxide-Semiconductor Transistor with T-Dual Dielectric Buried Layers[J]. Chin. Phys. Lett., 2013, 30(12): 047101
[13] YIN Hai-Tao, LÜ, Tian-Quan, LIU Xiao-Jie, XUE Hui-Jie. Spin Accumulation in a Double Quantum Dot Aharonov-Bohm Interferometer[J]. Chin. Phys. Lett., 2009, 26(4): 047101
[14] TANG Li. Generation of the W State through the Cavity-Electron Interaction[J]. Chin. Phys. Lett., 2009, 26(2): 047101
[15] HU Yong-Hong, LIU Zhong-Zhu. A Chiral Macroscopic Force between Liquid of Butyl Alcohol and Copper Block[J]. Chin. Phys. Lett., 2008, 25(11): 047101
Viewed
Full text


Abstract