CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
CuO Nanoparticle Modified ZnO Nanorods with Improved Photocatalytic Activity |
WEI Ang**, XIONG Li, SUN Li, LIU Yan-Jun, LI Wei-Wei |
Key Laboratory for Organic Electronics & Information Displays (KLOEID), Nanjing University of Posts and Telecommunications, Nanjing 210046
|
|
Cite this article: |
WEI Ang, XIONG Li, SUN Li et al 2013 Chin. Phys. Lett. 30 046202 |
|
|
Abstract Cupric oxide (CuO) nanoparticles were grown on zinc oxide (ZnO) nanorod (NR) arrays to form ZnO–CuO corn-like composites via a simple two step solution-based method. First, ZnO nanorods were grown on a glass substrate by the hydrothermal method. Afterwards, CuO crystals were photochemically deposited on ZnO NRs using ultraviolet (UV) light irradiation at room temperature. The density and size of CuO nanoparticles (NPs) on ZnO NRs can be controlled by the irradiation time of UV light. The structural and optical properties of ZnO–CuO nanocomposites were characterized by using various techniques such as UV-vis absorption spectroscopy, photoluminescence, scanning electron microscopy, energy dispersive x-ray spectroscopy, and x-ray diffraction. ZnO–CuO nanocomposites show an excellent improvement in photocatalytic characteristics compared to bare ZnO NRs.
|
|
Received: 07 January 2013
Published: 28 April 2013
|
|
PACS: |
62.23.Pq
|
(Composites (nanosystems embedded in a larger structure))
|
|
72.80.Tm
|
(Composite materials)
|
|
78.66.Sq
|
(Composite materials)
|
|
78.67.Bf
|
(Nanocrystals, nanoparticles, and nanoclusters)
|
|
78.67.Sc
|
(Nanoaggregates; nanocomposites)
|
|
|
|
|
[1] Escard J, Leclere C and J P Contour 1973 J. Catal. 29 31 [2] Yoneyama H, Yamashita Y and Tamura H 1979 Nature 282 817 [3] Hoffmann M R, Martin S T, Choi W et al 1995 Chem. Rev. 95 69 [4] Asahi R, Morikawa T, Ohwaki T et al 2001 Science 293 269 [5] Wang C H, Shao C L, Liu Y C et al 2009 Inorg. Chem. 48 1105 [6] Cui Y F, Wang C, Wu S J et al 2012 Chin. Phys. Lett. 29 037201 [7] Wang Z L 2008 ACS Nano 2 1987 [8] Wei A, Xu C X, Sun X W et al 2008 J. Disp. Technol. 4 9 [9] Wei A, Wang Z, Pan L H et al 2011 Chin. Phys. Lett. 28 080702 [10] Zhang Z Y, Shao C L, Li X H et al 2010 J. Phys. Chem. C 114 7920 [11] Baek Y W and An Y J 2011 Sci. Total Environ. 409 1603 [12] Ma H C, Han J H and Fu Y H 2011 Appl. Catal. B 102 417 [13] Wei S Q, Chen Y Y, Ma Y Y et al 2010 J. Mol. Catal. A: Chem. 331 112 [14] Shang D J, Yu K, Zhang Y S et al 2009 Appl. Surf. Sci. 255 4093 [15] Vidyasagar C C, Venkatesha T G and Viswanatha R 2012 Nano-Micro Lett. 4 73 [16] Wei A, Sun X W, Xu C X et al 2006 Nanotechnology 17 1740 [17] Wei A, Sun X W, Wang J X et al 2006 Appl. Phys. Lett. 89 123902 [18] Wei A, Sun X W, Xu C X et al 2006 Appl. Phys. Lett. 88 213102 [19] Jung S, Jeon S and Yong K 2010 Nanotechnology 22 015606 [20] Jung S and Yong K 2011 Chem. Commun. 47 2643 [21] Li B X and Wang Y F 2010 Superlattices Microstruct. 47 615 [22] Bai H W, Liu Z Y and Sun D D 2010 Chem. Commun. 46 6542 [23] Deo M, Shinde D, Yengantiwar A et al 2012 J. Mater. Chem. 22 17055 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|