Chin. Phys. Lett.  2013, Vol. 30 Issue (4): 046103    DOI: 10.1088/0256-307X/30/4/046103
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Dislocation Multiplication by Single Cross Slip for FCC at Submicron Scales
CUI Yi-Nan, LIU Zhan-Li, ZHUANG Zhuo**
Applied Mechanics Laboratory, School of Aerospace, Tsinghua University, Beijing 100084
Cite this article:   
CUI Yi-Nan, LIU Zhan-Li, ZHUANG Zhuo 2013 Chin. Phys. Lett. 30 046103
Download: PDF(809KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The operation mechanism of single cross slip multiplication (SCSM) is investigated by studying the response of one dislocation loop expanding in face-centered-cubic (FCC) single crystal using three-dimensional discrete dislocation dynamic (3D-DDD) simulation. The results show that SCSM can trigger highly correlated dislocation generation in a short time, which may shed some light on understanding the large strain burst observed experimentally. Furthermore, we find that there is a critical stress and material size for the operation of SCSM, which agrees with that required to trigger large strain burst in the compression tests of FCC micropillars.
Received: 22 November 2012      Published: 28 April 2013
PACS:  61.72.Hh (Indirect evidence of dislocations and other defects (resistivity, slip, creep, strains, internal friction, EPR, NMR, etc.))  
  62.20.fq (Plasticity and superplasticity)  
  62.20.F- (Deformation and plasticity)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/4/046103       OR      https://cpl.iphy.ac.cn/Y2013/V30/I4/046103
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CUI Yi-Nan
LIU Zhan-Li
ZHUANG Zhuo
[1] Uchic M D, Shade P A and Dimiduk D M 2009 Annu. Rev. Mater. Res. 39 361
[2] Wang Z J et al 2012 Appl. Phys. Lett. 100 071906
[3] Csikor F F et al 2007 Science 318 251
[4] Gao Y et al 2010 Chin. Phys. Lett. 27 086103
[5] Rao S I et al 2008 Acta Mater. 56 3245
[6] Greer J R 2006 Rev. Adv. Mater. Sci. 13 59
[7] Nix W D and Lee S W 2010 Philos. Mag. 91 1084
[8] Liu X M et al 2009 Chin. Phys. Lett. 26 026103
[9] Tang Q H, Yang T Y and Ding L 2010 Chin. Phys. Lett. 27 026104
[10] Tang H, Schwarz K W and Espinosa H D 2008 Phys. Rev. Lett. 100 185503
[11] Madec R, Devincre B and Kubin L P 2002 Scr. Mater. 47 689
[12] Motz C et al 2009 Acta Mater. 57 1744
[13] Rao S I et al 2011 Acta Mater. 59 7135
[14] Wang Z Q, Beyerlein I J and LeSar R 2007 Modell. Simul. Mater. Sci. Eng. 15 675
[15] Wei H J and Wei Y G 2012 Mater. Sci. Eng. A 541 38
[16] Huang J et al 2011 Appl. Phys. Lett. 98 221906
[17] Zhou C Z, Beyerlein I J and LeSar R 2011 Acta Mater. 59 7673
[18] Püschl W 2002 Prog. Mater. Sci. 47 415
[19] Devincre B 1996 Comput. Simulations Mater. Sci. (Amsterdam: Kluwer Academic Press)
[20] Tang Q H 2008 Chin. Phys. Lett. 25 2946
[21] Ouyang C J et al 2009 Mater. Sci. Eng. A 526 235
[22] Kubin L P et al 1992 Solid State Phenom. 23 455
[23] Gao Y et al 2010 Comput. Mater. Sci. 49 672
[24] Liu Z L et al 2009 Int. J. Plast. 25 1436
[25] Groh S et al 2009 Int. J. Plast. 25 1456
[26] Wang Z J et al 2012 Acta Mater. 60 1368
Related articles from Frontiers Journals
[1] Gang-Ling Hao, Yu-Chuan Li, Xing-Fu Wang, Wei-Guo Wang, Xin-Fu Wang, Dan Wang, Xian-Yu Li. Fe–Al Phase Formation Studied by Internal Friction during Heating Process[J]. Chin. Phys. Lett., 2020, 37(3): 046103
[2] Qi-Rong Xiao, Jia-Ding Tian, Yu-Sheng Huang, Xue-Jiao Wang, Ze-Hui Wang, Dan Li, Ping Yan, Ma-Li Gong. Internal Features of Fiber Fuse in a Yb-Doped Double-Clad Fiber at 3kW[J]. Chin. Phys. Lett., 2018, 35(5): 046103
[3] Jian-Qiao Hu, Zhan-Li Liu, Yi-Nan Cui, Feng-Xian Liu, Zhuo Zhuang. A New View of Incipient Plastic Instability during Nanoindentation[J]. Chin. Phys. Lett., 2017, 34(4): 046103
[4] HAO Gang-Ling, WANG Xin-Fu, LI Xian-Yu. Internal Friction Evidence on the Formation of Grain Boundary in Al Powder Sintering Process[J]. Chin. Phys. Lett., 2015, 32(02): 046103
[5] TANG Qi-Heng, YANG Tian-Yong, DING Lan. Mechanical Behavior of Nanometer Ni by Simulating Nanoindentation[J]. Chin. Phys. Lett., 2010, 27(2): 046103
[6] LU Guang-Duo, ZHANG Huai-Wu, TANG Xiao-Li, ZHONG Zhi-Yong, PENG Long. Theoretical Investigations on the Off-Center Displacement of Co2+ in SrO by Analyzing Its Anisotropic g Factors[J]. Chin. Phys. Lett., 2009, 26(8): 046103
[7] TANG Qi-Heng. Molecular Dynamics Study of Mechanical Behaviour of Screw Dislocation during Cutting with Diamond Tip on Silicon[J]. Chin. Phys. Lett., 2008, 25(8): 046103
[8] O. Sahin, N. Ucar. Creep Behaviour of Fe--Mn Binary Alloys[J]. Chin. Phys. Lett., 2006, 23(11): 046103
[9] YIN Long-Wei, LI Mu-Sen, YUAN Quan, XU Bin, HAO Zhao-Yin. Characterization of Growth Hillocks on the Surface of High-Pressure Synthetic Diamonds[J]. Chin. Phys. Lett., 2002, 19(11): 046103
[10] RUAN Yong-Feng, Hiroshi NAKAO, Takatomo SASAKI. BO2-F+ Centers in the Radiation-damaged YCOB Crystals[J]. Chin. Phys. Lett., 2000, 17(12): 046103
[11] LIU Chang-Song, ZHU Zhen-Gang, XIA Jun-Chao, SUN De-Yan. Different Cooling Rate Dependences of Different Microstructure Units in Aluminium Glass by Molecular Dynamics Simulation [J]. Chin. Phys. Lett., 2000, 17(1): 046103
[12] HAN Fu-sheng, ZHU Zhen-gang, WANG Shan-ying, LIU Chang-song. Nonlinear Internal Friction Character of Foamed Aluminum[J]. Chin. Phys. Lett., 1998, 15(1): 046103
[13] WANG Qiang, JI Zi-Wu, XIAO Hong-Di, LV Hai-Yan, LI Jian-Fei, XU Xian-Gang, LV Yuan-Jie, FENG Zhi-Hong. Photoluminescence of Nanoporous GaN Films Prepared by Electrochemical Etching[J]. Chin. Phys. Lett., 2014, 31(08): 046103
Viewed
Full text


Abstract