FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Experimental Demonstration of a Low-Pass Spatial Filter Based on a One-Dimensional Photonic Crystal with a Defect Layer |
SONG Dong-Mo1, TANG Zhi-Xiang1**, ZHAO Lei2, SUI Zhan2, WEN Shuang-Chun1, FAN Dian-Yuan1 |
1Key Laboratory for Micro-/Nano-Optoelectronic Devices of Ministry of Education, College of Information Science and Engineering, Hunan University, Changsha 410082 2Research Center of Laser Fusion, Chinese Academic of Engineering Physics, Mianyang 621900
|
|
Cite this article: |
SONG Dong-Mo, TANG Zhi-Xiang, ZHAO Lei et al 2013 Chin. Phys. Lett. 30 044206 |
|
|
Abstract It is predicted theoretically that a one-dimensional photonic crystal (PC) with a defect layer has an incident-angle dependent transmittance. Growing a multilayer of this PC structure on a BK7 glass substrate by means of thermal vacuum evaporation, we have experimentally measured its transmittance at near-infrared wavelength. The measured transmittance are in good agreement with the theoretical prediction if the influence of random errors in the layer thicknesses resulting from the deposition process is excluded. This work suggests that a one-dimensional PC with a defect layer can be fabricated as a two-dimensional near-field low-pass spatial filter.
|
|
Received: 11 December 2012
Published: 28 April 2013
|
|
PACS: |
42.70.Qs
|
(Photonic bandgap materials)
|
|
42.79.Ci
|
(Filters, zone plates, and polarizers)
|
|
78.20.Ci
|
(Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))
|
|
81.15.Dj
|
(E-beam and hot filament evaporation deposition)
|
|
|
|
|
[1] Schurig D and Smith D R 2003 Appl. Phys. Lett. 82 2215 [2] Goodman J W 1996 Introduction Fourier Opt. 2nd edn (McGraw-Hill) [3] Dettwiller L and Chavel P 1984 J. Opt. Soc. Am. A 1 18 [4] Luo Z M, Wen S C, Tang Z X, Luo H L, Xiang Y J and Song D M 2010 Opt. Commun. 283 2665 [5] Luo Z M, Tang Z X, Xiang Y J, Luo H L and Wen S C 2009 Appl. Phys. B 94 641 [6] Staliunas K and Sánchez-Morcillo V J 2009 Phys. Rev. A 79 053807 [7] Rabady R and Avrutsky I 2004 Opt. Lett. 29 605 [8] Sentenac A and Anne-Laure F 2005 J. Opt. Soc. Am. A 22 475 [9] Moreno I, Araiza J J and Avendano-Alejo M 2005 Opt. Lett. 30 914 [10] Tang Z X, Fan D Y, Wen S C, Ye Y X and Zhao C J 2007 Chin. Opt. Lett. 5 S211 [11] Serebryannikov A E, Petrov A Y and Ozbay E 2009 Appl. Phys. Lett. 94 181101 [12] Kocaman S, Aras M S, Panoiu N C, Lu M and Wong C W 2012 Opt. Lett. 37 665 [13] Serebryannikov A E and Magath T 2008 J. Opt. Soc. Am. B 25 286 [14] Maigyte L, Gertus T, Peckus M, Trull J, Cojocaru C, Sirutkaitis V and Staliunas K 2010 Phys. Rev. A 82 043819 [15] Soukoulis C M and Wegener M 2011 Nat. Photon. 5 523 [16] Liu N, Guo H, Fu L, Kaiser S, Schweizer H and Giessen H 2008 Nat. Mater. 7 31 [17] Soukoulis C M and Wegener M 2010 Science 330 1633 [18] Tsai Y J, Larouche S, Tyler T, Lipworth G, Jokerst N M and Smith D R 2011 Opt. Express 19 24411 [19] Usik P V, Serebryannikov A E and Ozbay E 2009 Opt. Commun. 282 4490 [20] Born M and Wolf E 1999 Principles Opt. 7th edn (Cambridge: Cambridge University) [21] Wang G H, Wang Q C, Wu X Y, Wang J, Liu X J, Ba N, Gao H X and Guo Y Q 2012 Acta. Phys. Sin. 61 134208 (in Chinese) [22] Dong J W, Han P and Wang H Z 2003 Chin. Phys. Lett. 20 1963 [23] Xiang Y, Dai X, Wen S and Fan D 2008 Opt. Lett. 33 1255 [24] Macleod H A 2001 Thin-Film Optical Filters (Bristol: Institute of Physics) [25] Jiang H T, Chen H, Li H Q, Zhang Y W and Zhu S Y 2003 Appl. Phys. Lett. 83 5386 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|