Chin. Phys. Lett.  2013, Vol. 30 Issue (4): 044206    DOI: 10.1088/0256-307X/30/4/044206
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Experimental Demonstration of a Low-Pass Spatial Filter Based on a One-Dimensional Photonic Crystal with a Defect Layer
SONG Dong-Mo1, TANG Zhi-Xiang1**, ZHAO Lei2, SUI Zhan2, WEN Shuang-Chun1, FAN Dian-Yuan1
1Key Laboratory for Micro-/Nano-Optoelectronic Devices of Ministry of Education, College of Information Science and Engineering, Hunan University, Changsha 410082
2Research Center of Laser Fusion, Chinese Academic of Engineering Physics, Mianyang 621900
Cite this article:   
SONG Dong-Mo, TANG Zhi-Xiang, ZHAO Lei et al  2013 Chin. Phys. Lett. 30 044206
Download: PDF(487KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract It is predicted theoretically that a one-dimensional photonic crystal (PC) with a defect layer has an incident-angle dependent transmittance. Growing a multilayer of this PC structure on a BK7 glass substrate by means of thermal vacuum evaporation, we have experimentally measured its transmittance at near-infrared wavelength. The measured transmittance are in good agreement with the theoretical prediction if the influence of random errors in the layer thicknesses resulting from the deposition process is excluded. This work suggests that a one-dimensional PC with a defect layer can be fabricated as a two-dimensional near-field low-pass spatial filter.
Received: 11 December 2012      Published: 28 April 2013
PACS:  42.70.Qs (Photonic bandgap materials)  
  42.79.Ci (Filters, zone plates, and polarizers)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  81.15.Dj (E-beam and hot filament evaporation deposition)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/4/044206       OR      https://cpl.iphy.ac.cn/Y2013/V30/I4/044206
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SONG Dong-Mo
TANG Zhi-Xiang
ZHAO Lei
SUI Zhan
WEN Shuang-Chun
FAN Dian-Yuan
[1] Schurig D and Smith D R 2003 Appl. Phys. Lett. 82 2215
[2] Goodman J W 1996 Introduction Fourier Opt. 2nd edn (McGraw-Hill)
[3] Dettwiller L and Chavel P 1984 J. Opt. Soc. Am. A 1 18
[4] Luo Z M, Wen S C, Tang Z X, Luo H L, Xiang Y J and Song D M 2010 Opt. Commun. 283 2665
[5] Luo Z M, Tang Z X, Xiang Y J, Luo H L and Wen S C 2009 Appl. Phys. B 94 641
[6] Staliunas K and Sánchez-Morcillo V J 2009 Phys. Rev. A 79 053807
[7] Rabady R and Avrutsky I 2004 Opt. Lett. 29 605
[8] Sentenac A and Anne-Laure F 2005 J. Opt. Soc. Am. A 22 475
[9] Moreno I, Araiza J J and Avendano-Alejo M 2005 Opt. Lett. 30 914
[10] Tang Z X, Fan D Y, Wen S C, Ye Y X and Zhao C J 2007 Chin. Opt. Lett. 5 S211
[11] Serebryannikov A E, Petrov A Y and Ozbay E 2009 Appl. Phys. Lett. 94 181101
[12] Kocaman S, Aras M S, Panoiu N C, Lu M and Wong C W 2012 Opt. Lett. 37 665
[13] Serebryannikov A E and Magath T 2008 J. Opt. Soc. Am. B 25 286
[14] Maigyte L, Gertus T, Peckus M, Trull J, Cojocaru C, Sirutkaitis V and Staliunas K 2010 Phys. Rev. A 82 043819
[15] Soukoulis C M and Wegener M 2011 Nat. Photon. 5 523
[16] Liu N, Guo H, Fu L, Kaiser S, Schweizer H and Giessen H 2008 Nat. Mater. 7 31
[17] Soukoulis C M and Wegener M 2010 Science 330 1633
[18] Tsai Y J, Larouche S, Tyler T, Lipworth G, Jokerst N M and Smith D R 2011 Opt. Express 19 24411
[19] Usik P V, Serebryannikov A E and Ozbay E 2009 Opt. Commun. 282 4490
[20] Born M and Wolf E 1999 Principles Opt. 7th edn (Cambridge: Cambridge University)
[21] Wang G H, Wang Q C, Wu X Y, Wang J, Liu X J, Ba N, Gao H X and Guo Y Q 2012 Acta. Phys. Sin. 61 134208 (in Chinese)
[22] Dong J W, Han P and Wang H Z 2003 Chin. Phys. Lett. 20 1963
[23] Xiang Y, Dai X, Wen S and Fan D 2008 Opt. Lett. 33 1255
[24] Macleod H A 2001 Thin-Film Optical Filters (Bristol: Institute of Physics)
[25] Jiang H T, Chen H, Li H Q, Zhang Y W and Zhu S Y 2003 Appl. Phys. Lett. 83 5386
Related articles from Frontiers Journals
[1] Qianju Song, Shiwei Dai, Dezhuan Han, Z. Q. Zhang, C. T. Chan, and Jian Zi. PT Symmetry Induced Rings of Lasing Threshold Modes Embedded with Discrete Bound States in the Continuum[J]. Chin. Phys. Lett., 2021, 38(8): 044206
[2] Lei Sun, Xiaoming Zhang, Han Gao, Jian Liu, Feng Liu, and Mingwen Zhao. Inversion/Mirror Symmetry-Protected Dirac Cones in Distorted Ruby Lattices[J]. Chin. Phys. Lett., 2020, 37(12): 044206
[3] Chen Huang , Qian-Ju Song , Peng Hu , Shi-Wei Dai , Hong Xiang, Dezhuan Han. Bound States in the Continuum in One-Dimensional Dimerized Plasmonic Gratings[J]. Chin. Phys. Lett., 2020, 37(6): 044206
[4] Chen Huang , Qian-Ju Song , Peng Hu , Shi-Wei Dai , Hong Xiang, Dezhuan Han. Bound States in the Continuum in One-Dimensional Dimerized Plasmonic Gratings *[J]. Chin. Phys. Lett., 0, (): 044206
[5] Xiao Wang, Guo-Dong Wei. Quantum Scars in Microwave Dielectric Photonic Graphene Billiards[J]. Chin. Phys. Lett., 2020, 37(1): 044206
[6] Guo-Guo Wei, Chong Miao, Hao-Chong Huang, Hua Gao. Zero Refractive Index Properties of Two-Dimensional Photonic Crystals with Dirac Cones[J]. Chin. Phys. Lett., 2019, 36(3): 044206
[7] Quan-Zhou Zhao, De-Long Zhang. Transmission Spectral Characteristics of Photonic Crystals Milled in Annealed Proton-Exchange LiNbO$_3$ Waveguide[J]. Chin. Phys. Lett., 2017, 34(3): 044206
[8] Labbani Amel, Benghalia Abdelmadjid. Design of Photonic Crystal Triplexer with Core-Shell Rod Defects[J]. Chin. Phys. Lett., 2015, 32(5): 044206
[9] ZHOU Xing-Ping, SHU Jing. Three-Dimensional Photon Control in Membrane-Stack Photonic Crystals[J]. Chin. Phys. Lett., 2014, 31(2): 044206
[10] LIN Xu-Sheng, LIU Jing-Lin, ZHENG Yun-Bao, LAN Sheng. Modulation of Junction Defects Created by Crossing Photonic Crystal Waveguides[J]. Chin. Phys. Lett., 2014, 31(1): 044206
[11] LI Jia-Qi, DONG Zheng-Gao, QIU Teng, ZHAI Ya. Low-Threshold Surface Plasmon Lasing using the Band Edge Mode in a Bi-Periodic Groove Array[J]. Chin. Phys. Lett., 2013, 30(8): 044206
[12] LI Qing-Bo, WU Rui-Xin, YANG Yan, SUN Hui-Ling. Modeling 2D Gyromagnetic Photonic Crystals by Modified FDTD Method[J]. Chin. Phys. Lett., 2013, 30(7): 044206
[13] CHEN Shou-Xiang, YANG Xiu-Lun, MENG Xiang-Feng, DONG Guo-Yan, WANG Yu-Rong, WANG Lin-Hui, HUANG Zhe . Improvement of the Focusing Resolution of Photonic Crystal Negative Refraction Imaging with a Hollow Component Structure[J]. Chin. Phys. Lett., 2013, 30(5): 044206
[14] HAN Li-Li, ZHANG Xiao-Jun, LIU Cheng-Zhi, FAN Cun-Bo, HAN Xing-Wei, WU Jin-Hui, GAO Jin-Yue. Controlled Photonic Stop Bands in a Four-Level Atomic System of an Inhomogeneously Broad-End Solid[J]. Chin. Phys. Lett., 2013, 30(3): 044206
[15] WANG Chang-Hui, KUANG Deng-Feng, CHANG Sheng-Jiang, LIN Lie. Terahertz Wave Confinement in Pillar Photonic Crystal with a Tapered Waveguide and a Point Defect[J]. Chin. Phys. Lett., 2012, 29(12): 044206
Viewed
Full text


Abstract