FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
The High Quantum Efficiency of Exponential-Doping AlGaAs/GaAs Photocathodes Grown by Metalorganic Chemical Vapor Deposition |
ZHANG Yi-Jun1**, ZHAO Jing1, ZOU Ji-Jun1,2, NIU Jun1, CHEN Xin-Long1, CHANG Ben-Kang1 |
1Institute of Electronic Engineering and Optoelectronic Technology, Nanjing University of Science and Technology, Nanjing 210094 2Engineering Research Center of Nuclear Technology Application (Ministry of Education), East China Institute of Technology, Nanchang 330013
|
|
Cite this article: |
ZHANG Yi-Jun, ZHAO Jing, ZOU Ji-Jun et al 2013 Chin. Phys. Lett. 30 044205 |
|
|
Abstract An exponential-doping structure is successfully applied to the preparation of AlGaAs/GaAs photocathodes through the metalorganic chemical vapor deposition (MOCVD) technique. The experimental results show that the quantum efficiency in the entire waveband region for the exponential-doping photocathodes grown by MOCVD is remarkably enhanced as compared to those grown by molecular beam epitaxy. As a result of the improved built-in electric fields and cathode performance parameters, the photoemission characteristics for the MOCVD-grown transmission-mode and reflection-mode AlGaAs/GaAs photocathodes are different over the wavelength region of interest.
|
|
Received: 05 November 2012
Published: 28 April 2013
|
|
PACS: |
42.70.Gi
|
(Light-sensitive materials)
|
|
71.55.Eq
|
(III-V semiconductors)
|
|
72.10.-d
|
(Theory of electronic transport; scattering mechanisms)
|
|
|
|
|
[1] Dupuis R D 2000 IEEE J. Sel. Top. Quantum Electron. 6 1040 [2] Cheng K Y 1997 Proc. IEEE 85 1649 [3] Martinelli R U and Fisher D G 1974 Proc. IEEE 62 1339 [4] André J P, Guittard P, Hallais J and Piaget C 1981 J. Cryst. Growth 55 235 [5] Narayanan A A, Fisher D G, Erickson L P and O'Clock G D 1984 J. Appl. Phys. 56 1886 [6] Niigaki M, Nagai T, Ota M, Nihashi T and Oba K 1988 Appl. Surf. Sci. 33-34 1160 [7] Nishitani T, Tabuchi M, Takeda Y, Suzuki Y, Motoki K and Meguro T 2009 Jpn. J. Appl. Phys. 48 06FF02 [8] Shi F, Zhang Y J, Cheng H C, Zhao J, Xiong Y J and Chang B K 2011 Chin. Phys. Lett. 28 044204 [9] Zou J J, Yang Z, Qiao J L, Gao P and Chang B K 2007 Proc. SPIE 6782 67822R [10] Zhang Y J, Niu J, Zhao J, Zou J J, Chang B K, Shi F and Cheng H C 2010 J. Appl. Phys. 108 093108 [11] Niu J, Zhang Y J, Chang B K, Yang Z and Xiong Y J 2009 Appl. Opt. 48 5445 [12] Yu S, Tan T Y and G?sele U 1991 J. Appl. Phys. 69 3547 [13] Zhang Y J, Niu J, Zhao J, Xiong Y J, Ren L, Chang B K and Qian Y S 2011 Chin. Phys. B 20 118501 [14] Goorsky M S, Kuech T F, Tischler M A and Potemski R M 1991 Appl. Phys. Lett. 59 2269 [15] Antypas G A, Escher J S, Edgecumbe J and Enck R S Jr 1978 J. Appl. Phys. 49 4301 [16] Sun Y, Liu Z, Pianetta P and Lee D 2007 J. Appl. Phys. 102 074908 [17] Sinor T W, Estrera J P, Phillips D L and Rector M K 1995 Proc. SPIE 2551 130 [18] Wight D R, Oliver P E, Prentice T and Steward V W 1981 J. Cryst. Growth 55 183 [19] Vergara G, Gómez L J, Presa J and Montojo M T 1990 J. Vac. Sci. Technol. A 8 3676 [20] Zhang Y J, Chang B K, YangZ, Niu J and Zou J J 2009 Chin. Phys. B 18 4541 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|