Chin. Phys. Lett.  2013, Vol. 30 Issue (4): 044203    DOI: 10.1088/0256-307X/30/4/044203
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Two-Mode Steady-State Entanglement in a Four-Level Atomic System
PING Yun-Xia1**, ZHANG Chao-Min1, CHEN Guang-Long1, ZHU Peng-Fei1, CHENG Ze2
1College of Fundamental Studies, Shanghai University of Engineering Science, Shanghai 201600
2School of Physics, Huazhong University of Science and Technology, Wuhan 430074
Cite this article:   
PING Yun-Xia, ZHANG Chao-Min, CHEN Guang-Long et al  2013 Chin. Phys. Lett. 30 044203
Download: PDF(479KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the continuous variable entanglement in a four-level atom according to the criterion proposed by Duan et al. [Phys. Rev. Lett. 84 (2000) 2722]. The atomic coherence is introduced using two external classical driving fields. We study the steady-state entanglement of the system in the presence of losses, concluding that the creation of entangled states can be achievable under certain conditions.
Received: 28 November 2012      Published: 28 April 2013
PACS:  42.50.Dv (Quantum state engineering and measurements)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  03.65.Ud (Entanglement and quantum nonlocality)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/4/044203       OR      https://cpl.iphy.ac.cn/Y2013/V30/I4/044203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
PING Yun-Xia
ZHANG Chao-Min
CHEN Guang-Long
ZHU Peng-Fei
CHENG Ze
[1] Horodecki R, Horodecki P, Horodecki M and K Horodecki 2009 Rev. Mod. Phys. 81 865
[2] Yu Y B, Wang H J and Feng J X 2011 Chin. Phys. Lett. 28 090304
[3] Bowen W P, Schnabel R, Lam P K and Ralph T C 2003 Phys. Rev. Lett. 90 043601
[4] Jia X J et al 2004 Phys. Rev. Lett. 93 250503
[5] Villar A S et al 2005 Phys. Rev. Lett. 95 243603
[6] Julsgaard B, Kozhekin A and Polzik E S 2001 Nature 413 400
[7] Josse V et al 2004 Phys. Rev. Lett. 92 123601
[8] Zurek W H 2003 Rev. Mod. Phys. 75 715
[9] Tesfa S 2007 J. Phys. B 40 2373
[10] Xiong H, Scully M O and Zubairy M S 2005 Phys. Rev. Lett. 94 023601
[11] Cheng G L, Chen A X, Geng J, Zhong W X and Deng L 2012 Chin. Phys. B 21 084206
[12] Zha T T, Chen A X and Yang W X 2011 Commun. Theor. Phys. 56 1097
[13] Yu Y B and Wang H J 2012 Opt. Commun. 285 2223
[14] Sete E A 2011 Phys. Rev. A 84 063808
[15] Ping Y X, Zhang B and Cheng Z 2007 Phys. Lett. A 366 596
[16] Tesfa S 2006 Phys. Rev. A 74 043816
[17] Qamar S, Al-Amri M and Zubairy M S 2009 Phys. Rev. A 79 013831
[18] Duan L M, Giedke G, Cirac J I and Zoller P 2000 Phys. Rev. Lett. 84 2722
[19] Tesfa S 2008 J. Phys. B: At. Mol. Opt. Phys. 41 055503
[20] Tesfa S 2008 J. Phys. B: At. Mol. Opt. Phys. 41 145501
[21] Meschede D, Walther H and Muller G 1985 Phys. Rev. Lett. 54 551
[22] Raimond J M, Brune M and Haroche S 2001 Rev. Mod. Phys. 73 565
Related articles from Frontiers Journals
[1] Qiuxin Zhang, Chenhao Zhu, Yuxin Wang, Liangyu Ding, Tingting Shi, Xiang Zhang, Shuaining Zhang, and Wei Zhang. Experimental Test of Contextuality Based on State Discrimination with a Single Qubit[J]. Chin. Phys. Lett., 2022, 39(8): 044203
[2] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 044203
[3] Shaowei Li, Daojin Fan, Ming Gong, Yangsen Ye, Xiawei Chen, Yulin Wu, Huijie Guan, Hui Deng, Hao Rong, He-Liang Huang, Chen Zha, Kai Yan, Shaojun Guo, Haoran Qian, Haibin Zhang, Fusheng Chen, Qingling Zhu, Youwei Zhao, Shiyu Wang, Chong Ying, Sirui Cao, Jiale Yu, Futian Liang, Yu Xu, Jin Lin, Cheng Guo, Lihua Sun, Na Li, Lianchen Han, Cheng-Zhi Peng, Xiaobo Zhu, and Jian-Wei Pan. Realization of Fast All-Microwave Controlled-Z Gates with a Tunable Coupler[J]. Chin. Phys. Lett., 2022, 39(3): 044203
[4] Ao-Lin Guo , Tao Tu, Le-Tian Zhu , and Chuan-Feng Li. High-Fidelity Geometric Gates with Single Ions Doped in Crystals[J]. Chin. Phys. Lett., 2021, 38(9): 044203
[5] Shaoxing Liu, Xuanying Lai, Ce Yang, and J. F. Chen. Towards High-Dimensional Entanglement in Path: Photon-Source Produced from a Two-Dimensional Atomic Cloud[J]. Chin. Phys. Lett., 2021, 38(8): 044203
[6] Bo Gong , Tao Tu, Ao-Lin Guo , Le-Tian Zhu , and Chuan-Feng Li. A Noise-Robust Pulse for Excitation Transfer in a Multi-Mode Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(4): 044203
[7] Hongbin Liang, Jiancheng Pei, and Xiaoguang Wang. Enhancing Phase Sensitivity in Mach–Zehnder Interferometers for Arbitrary Input States[J]. Chin. Phys. Lett., 2020, 37(7): 044203
[8] Hao Cao, Wenping Ma, Ge Liu, Liangdong Lü, Zheng-Yuan Xue. Quantum Secure Multiparty Computation with Symmetric Boolean Functions[J]. Chin. Phys. Lett., 2020, 37(5): 044203
[9] Kun-Peng Wang, Jun Zhuang, Xiao-Dong He, Rui-Jun Guo, Cheng Sheng, Peng Xu, Min Liu, Jin Wang, Ming-Sheng Zhan. High-Fidelity Manipulation of the Quantized Motion of a Single Atom via Stern–Gerlach Splitting[J]. Chin. Phys. Lett., 2020, 37(4): 044203
[10] Xiao-Yu Zhao, Jun-Hui Huang, Zhi-Yao Zhuo, Yong-Zhou Xue, Kun Ding, Xiu-Ming Dou, Jian Liu, Bao-Quan Sun. Optical Properties of Atomic Defects in Hexagonal Boron Nitride Flakes under High Pressure[J]. Chin. Phys. Lett., 2020, 37(4): 044203
[11] Xing-Yu Zhu, Tao Tu, Ao-Lin Guo, Zong-Quan Zhou, Guang-Can Guo. Measurement of Spin Singlet-Triplet Qubit in Quantum Dots Using Superconducting Resonator[J]. Chin. Phys. Lett., 2020, 37(2): 044203
[12] Shuang-Shuang Fu, Shun-Long Luo. Quantifying Process Nonclassicality in Bosonic Fields[J]. Chin. Phys. Lett., 2019, 36(10): 044203
[13] Sheng-Li Zhang, Song Yang. Methods for Derivation of Density Matrix of Arbitrary Multi-Mode Gaussian States from Its Phase Space Representation[J]. Chin. Phys. Lett., 2019, 36(9): 044203
[14] Yao Chen, Fo-Liang Lin, Xi Liang, Nian-Quan Jiang. Programmable Quantum Processor with Quantum Dot Qubits[J]. Chin. Phys. Lett., 2019, 36(7): 044203
[15] Rui Liu, Ling-Jun Kong, Zhou-Xiang Wang, Yu Si, Wen-Rong Qi, Shuang-Yin Huang, Chenghou Tu, Yongnan Li, Hui-Tian Wang. Two-Photon Interference Constructed by Two Hong–Ou–Mandel Effects in One Mach-Zehnder Interferometer[J]. Chin. Phys. Lett., 2018, 35(9): 044203
Viewed
Full text


Abstract