Chin. Phys. Lett.  2013, Vol. 30 Issue (4): 043201    DOI: 10.1088/0256-307X/30/4/043201
ATOMIC AND MOLECULAR PHYSICS |
The Probe Transmission Spectra of 87Rb in an Operating Magneto-Optical Trap in the Presence of an Ionizing Laser
LIU Long-Wei1, JIA Feng-Dong1, RUAN Ya-Ping1, HUANG Wei2, LV Shuang-Fei1, XUE Ping2, XU Xiang-Yuan2,3, DAI Xing-Can2, ZHONG Zhi-Ping1**
1School of Physics, University of Chinese Academy of Sciences, PO Box 4588, Beijing 100049
2State Key Laboratory for Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084
3Department of Physics, Capital Normal University, Beijing 100037
Cite this article:   
LIU Long-Wei, JIA Feng-Dong, RUAN Ya-Ping et al  2013 Chin. Phys. Lett. 30 043201
Download: PDF(1149KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The influence of an ionizing laser on the pump-probe spectra of 87Rb over the transition 52S1/2,F=252P3/2,F'=3 is experimentally studied in an operating magneto-optical trap. These spectral features, including gain peak, a dispersion-like structure and absorption peak, become weak as the intensity of the ionizing laser increases. Moreover, the profiles of the absorption peak and gain peak vary as the ionizing laser intensity changes. Such results indicate that there is more than one component in the two features and that each component has different dependences on the number of 87Rb atoms.
Received: 07 January 2013      Published: 28 April 2013
PACS:  32.70.Jz (Line shapes, widths, and shifts)  
  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  42.50.Nn (Quantum optical phenomena in absorbing, amplifying, dispersive and conducting media; cooperative phenomena in quantum optical systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/4/043201       OR      https://cpl.iphy.ac.cn/Y2013/V30/I4/043201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Long-Wei
JIA Feng-Dong
RUAN Ya-Ping
HUANG Wei
LV Shuang-Fei
XUE Ping
XU Xiang-Yuan
DAI Xing-Can
ZHONG Zhi-Ping
[1] Raab E L, Prentiss M, Cable A, Chu S and Protchard D E 1987 Phys. Rev. Lett. 59 2631
[2] See, e.g., Fleischhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633
[3] Grison D, Lounis B, Salomon C, Courtois J Y and Grynberg G 1991 Europhys. Lett. 15 149
[4] Tabosa J W R, Chen G, Hu Z, Lee R B and Kimble H J 1991 Phys. Rev. Lett. 66 3245
[5] Lounis B, Courtois J Y, Verkerk P, Salomon C and Grynbeg G 1992 Phys. Rev. Lett. 69 3029
[6] Mitsunaga M, Mukai T, Watanabe K and Mukai T 1996 J. Opt. Soc. Am. B 13 2696
[7] Yan S B, Liu T, Geng T, Zhang T C, Peng K C and Wang J M 2004 Chin. Phys. 13 1669
[8] Tomasz M Brzozowski, Brzozowska M, Zachorowski J, ZawadaM and Gawlik W 2005 Phys. Rev. A 71 013401
[9] Veldt T, Roth J F, Grelu P and Grangier P 1997 Opt. Commun. 137 420
[10] Zhang W Z, Cheng H D, Liu L and Wang Y Z 2009 Phys. Rev. A 79 053804
[11] Chen Y C, Chen Y W, Su J J, Huang J Y and Yu I A 2001 Phys. Rev. A 63 043808
[12] Zachorowski J, Brzozowski T, Palasz T, Zawada W and Gawlik W 2002 Acta Phys. Polon. A 101 61
[13] Zhou S Y, Xu Z, Zhou S Y and Wang Y Z 2005 Chin. Phys. Lett. 22 1672
[14] See, e.g., Cohen-Tannoudji C, Dupont-Roc J and GrynbergG 1992 Atom-Photon Interactions: Basic Processes and Applications (New York: Wiley) pp 442–446
[15] Ruan Y P et al 2013 Phys. Rev. A (submitted)
[16] Huang W, Ruan Y P, Jia F D, Zhong Y P, Liu L W, Dai X C, Xue P, Xu X Y and Zhong Z P 2012 Chin. Phys. Lett. 29 013201
[17] Lowell J R, Northup T, Patterson B M, Takekoshi T andKnize R J 2002 Phys. Rev. A 66 062704
Related articles from Frontiers Journals
[1] Bing-Kun Lu, Zhen Sun, Tao Yang, Yi-Ge Lin, Qiang Wang, Ye Li, Fei Meng, Bai-Ke Lin, Tian-Chu Li, and Zhan-Jun Fang. Improved Evaluation of BBR and Collisional Frequency Shifts of NIM-Sr2 with $7.2 \times 10^{-18}$ Total Uncertainty[J]. Chin. Phys. Lett., 2022, 39(8): 043201
[2] Mo-Juan Yin, Tao Wang, Xiao-Tong Lu, Ting Li, Ye-Bing Wang, Xue-Feng Zhang, Wei-Dong Li, Augusto Smerzi, and Hong Chang. Rabi Spectroscopy and Sensitivity of a Floquet Engineered Optical Lattice Clock[J]. Chin. Phys. Lett., 2021, 38(7): 043201
[3] Shao-Long Chen, Peng-Peng Zhou, Shi-Yong Liang, Wei Sun, Huan-Yao Sun, Yao Huang, Hua Guan, Ke-Lin Gao. Deceleration of Metastable $\rm{Li}^{+}$ Beam by Combining Electrostatic Lens and Ion Trap Technique[J]. Chin. Phys. Lett., 2020, 37(7): 043201
[4] Fu-Qiang Yu, Mu-Tian Cheng, Shao-Ming Li, Xiao-San Ma, Zhi-Feng Zhu, Xian-Shan Huang. Polarization Conversion of Single Photon via Scattering by a ${\Lambda}$ System in a Semi-Infinite Waveguide[J]. Chin. Phys. Lett., 2019, 36(5): 043201
[5] Khan Sadiq Nawaz, Cheng-Dong Mi, Liang-Chao Chen, Peng-Jun Wang, Jing Zhang. Experimental Investigation of the Electromagnetically Induced-Absorption-Like Effect for an N-Type Energy Level in a Rubidium BEC[J]. Chin. Phys. Lett., 2019, 36(4): 043201
[6] Yi-Hong Li, Shao-Hua Li, Jin-Peng Yuan, Li-Rong Wang, Lian-Tuan Xiao, Suo-Tang Jia. Experimental Study on Double Resonance Optical Pumping Spectroscopy in a Ladder-Type System of $^{87}$Rb Atoms[J]. Chin. Phys. Lett., 2018, 35(9): 043201
[7] Ce Shi, Mu-Tian Cheng, Xiao-San Ma, Dong Wang, Xianshan Huang, Bing Wang, Jia-Yan Zhang. Nonreciprocal Single Photon Frequency Conversion via Chiral Coupling between a V-Type System and a Pair of Waveguides[J]. Chin. Phys. Lett., 2018, 35(5): 043201
[8] Sheng-Nan Zhang, Xiao-Gang Zhang, Jian-Hui Tu, Zhao-Jie Jiang, Hao-Sen Shang, Chuan-Wen Zhu, Wei Yang, Jing-Zhong Cui, Jing-Biao Chen. A 420nm Blue Diode Laser for the Potential Rubidium Optical Frequency Standard[J]. Chin. Phys. Lett., 2017, 34(7): 043201
[9] Jie Zhang, Ke Deng, Jun Luo, Ze-Huang Lu. Direct Laser Cooling Al$^+$ Ion Optical Clocks[J]. Chin. Phys. Lett., 2017, 34(5): 043201
[10] Hui Liu, Xi Zhang, Kun-Liang Jiang, Jin-Qi Wang, Qiang Zhu, Zhuan-Xian Xiong, Ling-Xiang He, Bao-Long Lyu. Realization of Closed-Loop Operation of Optical Lattice Clock Based on $^{171}$Yb[J]. Chin. Phys. Lett., 2017, 34(2): 043201
[11] Shao-Yang Dai, Kun-Qian Li, Yue-Yang Zhai, Wei Xia, Qing Wang, Wei Xiong, Xiang-Hui Qi, Xu-Zong Chen. Absolutely Direct Frequency Measurement of Two-Photon Transition Using Multi-Peak Fitting Approach[J]. Chin. Phys. Lett., 2017, 34(1): 043201
[12] Teng-Fei Meng, Zhong-Hua Ji, Yan-Ting Zhao, Lian-Tuan Xiao, Suo-Tang Jia. Excitation Dependence of Dipole–Dipole Broadening in Selective Reflection Spectroscopy[J]. Chin. Phys. Lett., 2016, 33(11): 043201
[13] Zhi-Hui Yang, Hao Liu, Yue-Hong He, Man Wang, Yong-Quan Wan, Yi-He Chen, Lei She, Jiao-Mei Li. Optimal Microwave Radiation Field Parameters for Mercury Ion Microwave Frequency Standards[J]. Chin. Phys. Lett., 2016, 33(06): 043201
[14] Wei Xia, Shao-Yang Dai, Yin Zhang, Kun-Qian Li, Qi Yu, Xu-Zong Chen. Precision Frequency Measurement of $^{87}$Rb 5$S_{1/2}$ ($F=2$)$\to$5$D_{5/2}$ ($F''=4$) Two-Photon Transition through a Fiber-Based Optical Frequency Comb[J]. Chin. Phys. Lett., 2016, 33(05): 043201
[15] Bin Duan, Muhammad Abbas Bari, Ze-Qing Wu, Jun Yan, Jian-Guo Wang. Stark-Broadened Profiles of the Spectral Line $P_ \alpha$ in He II Ions[J]. Chin. Phys. Lett., 2016, 33(03): 043201
Viewed
Full text


Abstract