Chin. Phys. Lett.  2013, Vol. 30 Issue (4): 042502    DOI: 10.1088/0256-307X/30/4/042502
NUCLEAR PHYSICS |
The Influence of the Dependence of Surface Energy Coefficient to Temperature in the Proximity Model
M. Salehi1, O. N. Ghodsi2**
1Sciences Faculty, Department of Physics, Qaemshahr Branch, Islamic Azad University, P. O. Box 163, Qaemshahr, Iran
2Sciences Faculty, Department of Physics, University of Mazandaran, P. O. Box 47415-416, Babolsar, Iran
Cite this article:   
M. Salehi, O. N. Ghodsi 2013 Chin. Phys. Lett. 30 042502
Download: PDF(553KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We introduce a new surface energy coefficient in proximity formalism, which is dependent on temperature, and apply it to a systematic study of barrier height and position. This proximity model can effectively predict the barrier heights and positions, as well as the fusion cross sections, over a wide range of incident energies, especially in light-heavy nuclei interaction.
Received: 31 January 2013      Published: 28 April 2013
PACS:  25.70.Jj (Fusion and fusion-fission reactions)  
  24.10.-i (Nuclear reaction models and methods)  
  25.60.Pj (Fusion reactions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/4/042502       OR      https://cpl.iphy.ac.cn/Y2013/V30/I4/042502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
M. Salehi
O. N. Ghodsi
[1] Dutt I and Puri R K 2010 Phys. Rev. C 81 044615
[2] Dutt I and Puri R K 2010 Phys. Rev. C 81 047601
[3] Dutt I and Puri R K 2010 Phys. Rev. C 81 064608
[4] Dutt I and Puri R K 2010 Phys. Rev. C 81 064609
[5] Blocki J, Randrup J, Swiatecki W J and Tsang C F 1977 Ann. Phys. 105 27
[6] Myers W D and Swiatecki W J 2000 Phys. Rev. C 62 044610
[7] Reisdorf W 1994 J. Phys. G: Nucl. Part. Phys. 20 1297
[8] Siwek-Wilczynska K and Wilczynski J 2004 Phys. Rev. C 69 024611
[9] Puri R K, Chattopadhyay P and Gupta R K 1991 Phys. Rev. C 43 315
[10] Puri R K and Gupta R K 1992 Phys. Rev. C 45 1837
[11] Denisov V Y 2002 Phys. Lett. B 526 315
[12] Salehi M and Ghodsi O N 2011 Int. J. Mod. Phys. E 20 2337
[13] Shlomo S and Natowitz J B 1991 Phys. Rev. C 44 2878
[14] Royer G and Mignen J 1992 J. Phys. G: Nucl. Part. Phys. 18 1781
[15] Biney P O, Dong W and Lienhard J H 1986 J. Heat Transfer 108 405
[16] Lienhard I V J H and Lienhard V J H 2003 A Heat Transfer Textbook (Phlogiston Press) chap 9 p 465
[17] Froba A P, Will S and Leipertz A 2000 Int. J. Thermophys. 21 1225
[18] Brink D M and Smilansky U 1983 Nucl. Phys. A 405 301
[19] Hill D L and Wheeler J A 1953 Phys. Rev. 89 1102
[20] Balantekin A B and Takigawa N 1998 Rev. Mod. Phys. 70 77
[21] Padron I et al 2002 Phys. Rev. C 66 044608
[22] Tighe R J, Kolata J J, Belbot M and Aguilera E F 1993 Phys. Rev. C 47 2699
[23] Beck C et al 2003 Phys. Rev. C 67 054602
[24] Vaz L C, Alexander J M and Satchler G R 1981 Phys. Rep. 69 373
[25] Kolata J J et al 1998 Phys. Rev. Lett. 81 4580
[26] Morsad A et al 1990 Phys. Rev. C 41 988
[27] Trotta M et al 2000 Phys. Rev. Lett. 84 2342
[28] Rath P K et al 2009 Phys. Rev. C 79 051601
[29] Gomes P R S et al 1991 Nucl. Phys. A 534 429
[30] Cavallaro S et al 1990 Nucl. Phys. A 513 174
[31] Newton J O et al 2004 Phys. Rev. C 70 024605
[32] Silva C P et al 1997 Phys. Rev. C 55 3155
[33] Liu Z H et al 2005 Eur. Phys. J. A 26 73
[34] Aguilera E F, Kolata J J and Tighe R J 1995 Phys. Rev. C 52 3103
[35] Stefanini A M et al 2008 Phys. Rev. C 78 044607
[36] Kolata J J et al 2004 Phys. Rev. C 69 047601
[37] Prasad N V S V et al 1996 Nucl. Phys. A 603 176
[38] Tripathi V et al 2001 Phys. Rev. C 65 014614
[39] Sinha S et al 2001 Phys. Rev. C 64 024607
[40] Trotta M et al 2001 Phys. Rev. C 65 011601
[41] Aguilera E F et al 1990 Phys. Rev. C 41 910
[42] Sonzogni A A et al 1998 Phys. Rev. C 57 722
[43] Szanto E M et al 1990 Phys. Rev. C 41 2164
[44] Vega J J et al 1990 Phys. Rev. C 42 947
[45] Stefanini A M et al 2002 Phys. Rev. C 65 034609
[46] Quiroz E M, Aguilera E F, Kolata J J and Zahar M 2001 Phys. Rev. C 63 054611
[47] Vinodkumar A M et al 1996 Phys. Rev. C 53 803
[48] Stefanini A M et al 2000 Phys. Rev. C 62 014601
[49] Baby L T et al 2000 Phys. Rev. C 62 014603
[50] Capurro O A et al 2002 Phys. Rev. C 65 064617
[51] Stefanini A M et al 2006 Phys. Rev. C 73 034606
[52] Stelson P H et al 1990 Phys. Rev. C 41 1584
[53] Mitsuoka S et al 2007 Phys. Rev. Lett. 99 182701
[54] Sonzogni A A et al 1996 Phys. Rev. C 53 243
[55] Dasgupta M et al 1992 Nucl. Phys. A 539 351
[56] Sikora B et al 1979 Phys. Rev. C 20 2219
[57] Mukherjee A et al 2002 Phys. Rev. C 66 34607
[58] Morton C R et al 1999 Phys. Rev. C 60 044608
[59] Newton J O et al 2001 Phys. Rev. C 64 64608
Related articles from Frontiers Journals
[1] Pei-Wei Wen, Zhao-Qing Feng, Fan Zhang, Cheng Li, Cheng-Jian Lin, Feng-Shou Zhang. Positive $Q$-Value Neutron Transfer Mediated Sub-Barrier Fusion Reactions[J]. Chin. Phys. Lett., 2017, 34(4): 042502
[2] Raj Kumari, Sumandeep Kaur. Proximity Approach to Study the Fusion Barriers for Proton and Helium Induced Reactions[J]. Chin. Phys. Lett., 2014, 31(11): 042502
[3] WU Yi-Heng, LU Jing-Bin, LUO Peng-Wei, LI Guang-Sheng, LI Hong-Wei, WU Xiao-Guang, HE Chuang-Ye, ZHENG Yun, MA Ke-Yan, YANG Dong, LI Cong-Bo, HU Shi-Peng, LIU Jia-Jian, WANG Jin-Long, YAO Shun-He, CHEN Qi-Ming, ZHONG Jian. High-Spin States in the Odd-Odd Nucleus 92Nb[J]. Chin. Phys. Lett., 2014, 31(04): 042502
[4] M. Golshanian, O. N. Ghodsi, R. Gharaei, V. Zanganeh. The Analysis of the Fusion Reaction of Two Colliding Nuclei Using the FCC Lattice Model[J]. Chin. Phys. Lett., 2013, 30(10): 042502
[5] ZHU Min, FU Jun-Li, QU Zhen, LIU Zu-Hua, WANG Wen-Zhong. The Role of Neck Evolution in the Synthesis of Superheavy Element 112[J]. Chin. Phys. Lett., 2013, 30(8): 042502
[6] JIANG Song-Sheng, XU Xiao-Ming, ZHU Li-Qun, GU Shao-Gang, RUAN Xi-Chao, HE Ming, QI Bu-Jia. Anomalous Neutron Burst Emissions in Deuterium-Loaded Metals: Nuclear Reaction at Normal Temperature[J]. Chin. Phys. Lett., 2012, 29(11): 042502
[7] ZHANG Zhi-Yuan, GAN Zai-Guo**, MA Long, HUANG Ming-Hui, HUANG Tian-Heng, WU Xiao-Lei, JIA Guo-Bin, LI Guang-Shun, YU Lin, REN Zhong-Zhou, ZHOU Shan-Gui, ZHANG Yu-Hu, ZHOU Xiao-Hong, XU Hu-Shan, ZHANG Huan-Qiao, XIAO Guo-Qing, ZHAN Wen-Long. Observation of the Superheavy Nuclide 271Ds[J]. Chin. Phys. Lett., 2012, 29(1): 042502
[8] Ishwar Dutt**, Narinder K. Dhiman. Study of Fusion Dynamics Using Skyrme Energy Density Formalism with Different Surface Corrections[J]. Chin. Phys. Lett., 2010, 27(11): 042502
[9] Ishwar Dutt**, Rajni Bansal . A Modified Proximity Approach in the Fusion of Heavy Ions[J]. Chin. Phys. Lett., 2010, 27(11): 042502
[10] HE Chuang-Ye, CUI Xing-Zhu, ZHU Li-Hua, WU Xiao-Guang, LI Guang-Sheng, LIU Ying, WANG Zhi-Min, WEN Shu-Xian, SUN Hui-Bin, MA Rui-Gang, YANG Chun-Xiang. Shell Structures in 91Nb[J]. Chin. Phys. Lett., 2010, 27(10): 042502
[11] WANG Nan, DOU Liang, ZHAO En-Guang, Werner Scheid. Nuclear Hexadecapole Deformation Effects on the Production of Super-Heavy Elements[J]. Chin. Phys. Lett., 2010, 27(6): 042502
[12] ZHANG Gao-Long, LE Xiao-Yun, LIU Zu-Hua. Coulomb Potentials between Spherical and Deformed Nuclei[J]. Chin. Phys. Lett., 2008, 25(4): 042502
[13] HUANG Ming-Hui, GAN Zai-Guo, FENG Zhao-Qing, ZHOU Xiao-Hong, LI Jun-Qing,. Neutron and Proton Diffusion in Fusion Reactions for the Synthesis of Superheavy Nuclei[J]. Chin. Phys. Lett., 2008, 25(4): 042502
[14] WANG Nan, LI Jun-Qing, ZHAO En-Guang,. Shell Correction and Pairing Energies in the Dinuclear System Model[J]. Chin. Phys. Lett., 2008, 25(1): 042502
[15] YUE Chong-Xing, ZHANG Nan, DING Li, ZHU Shi-Hai, WANG Li-Hong. Associated Production of Scalars and New Gauge Bosons from a Little Higgs Model at the LHC[J]. Chin. Phys. Lett., 2008, 25(1): 042502
Viewed
Full text


Abstract