Chin. Phys. Lett.  2013, Vol. 30 Issue (4): 041201    DOI: 10.1088/0256-307X/30/4/041201
THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
Finding a Way to Determine the Pion Distribution Amplitude from the Experimental Data
HUANG Tao1, WU Xing-Gang2, ZHONG Tao1
1Institute of High Energy Physics and Theoretical Physics Center for Science Facilities, Chinese Academy of Sciences, Beijing 100049
2Department of Physics, Chongqing University, Chongqing 401331
Cite this article:   
HUANG Tao, WU Xing-Gang, ZHONG Tao 2013 Chin. Phys. Lett. 30 041201
Download: PDF(504KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

It is believed that one can extract more accurate information of the pion distribution amplitude from the pion-photon transition form factor (TFF) due to the single pion in this process. However, the BABAR and Belle data of the pion-photon TFF have a big difference for Q2∈[15,40] GeV2, and at present, the pion DA can not be definitely determined from the pion-photon TFF. It is crucial to find the right pion DA behavior and to determine which data is more reliable. We perform a combined analysis of the most existing data of the processes involving pion by using a general model for the pion wavefunction/DA. Such a DA model can mimic all the existed pion DA behaviors, whose parameters can be fixed by the constraints from the processes π0→γγ, π→μν, and B→πl ν, etc. Especially, we examine the B →π transition form factors that provides another constraint to the parameter B in our DA model, which results in B∈[0.00,0.29]. This inversely shows that the predicted curve for the pion-photon TFF is between the BABAR and Belle data in the region Q2∈[15,40] GeV2. It will be tested by coming more accurate data in large Q2 region, and the definite behavior of pion DA can be concluded finally.

Received: 11 March 2013      Published: 28 April 2013
PACS:  12.38.-t (Quantum chromodynamics)  
  12.38.Bx (Perturbative calculations)  
  14.40.Aq  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/4/041201       OR      https://cpl.iphy.ac.cn/Y2013/V30/I4/041201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HUANG Tao
WU Xing-Gang
ZHONG Tao

[1] Uehara S et al arXiv:1205.3249v2[hep-ex]
[2] Aubert B et al 2009 Phys. Rev. D 80 052002
[3] Beringer J et al 2012 Phys. Rev. D 86 010001
[4] Wu X G and Huang T 2010 Phys. Rev. D 82 034024
[5] Wu X G and Huang T 2011 Phys. Rev. D 84 074011
[6] Huang T, Ma B Q and Shen Q X 1994 Phys. Rev. D 49 1490
[7] Cao F G and Huang T 1999 Phys. Rev. D 59 093004
[8] Huang T, Wu X G and Wu X H 2004 Phys. Rev. D 70 053007
[9] Huang T and Wu X G 2004 Phys. Rev. D 70 093013
[10] Huang T and Wu X G 2007 Int. J. Mod. Phys. A 22 3065
[11] Brodsky S J, Huang T and Lepage G P 1983 Proc. Banff Summer Inst. (NewYork: Plenum) p 143
[12] Huang T 1981 Proc. XXth Int. Conf. High Energy Phys. (New York: AIP) p 1000
[13] Melosh H J 1974 Phys. Rev. D 9 1095
[14] Lepage G P and Brodsky S J 1980 Phys. Rev. D 22 2157
[15] Wu X G, Huang T and Zhong T 2012 arXiv:1206.0466v2[hep-ph]
[16] Huang T and Wu X G 2005 Phys. Rev. D 71 034018
[17] Belyaev V M, Braun V M, Khodjamirian A and Rückl A 1995 Phys. Rev. D 51 6177
[18] Ball P 1998 J. High Energy Phys. 09 005
[19] Ball P and Zwicky R 2005 Phys. Rev. D 71 014015
[20] Ball P and Zwicky R 2001 J. High Energy Phys. 10 019
[21] Duplancic G, Khodjamirian A, Mannel T and Melic B 2008 J. High Energy Phys. 04 014
[22] Huang T, Li Z H and Wu X Y 2001 Phys. Rev. D 63 094001
[23] Wang Z G, Zhou M Z and Huang T 2003 Phys. Rev. D 67 094006
[24] Huang T, Li Z H, Wu X G and Zuo F 2008 Int. J. Mod. Phys. A 23 3237
[25] Wu X G and Huang T 2009 Phys. Rev. D 79 034013
[26] Li Z H, Zhu N, Fan X J and Huang T 2012 J. High Energy Phys. 2012 160
[27] Zhou M Z, Wu X H and Huang T 2004 High Energy Phys. Nucl. Phys. 28 927
[28] Zhong T, Wu X G, Zhang J W, Tang Y Q and Fang Z Y 2011 Phys. Rev. D 83 036002
[29] Sanchez P et al 2011 Phys. Rev. D 83 052011
[30] Bailey J A et al 2009 Phys. Rev. D 79 054507
[31] Debbio L D, Flynn J M, Lellouch L and Nieves J 1998 Phys. Lett. B 416 392
[32] Kuhn J H, Steinhauser M and Sturm C 2007 Nucl. Phys. B 778 192
[33] Brodsky S J and Teramond G F 2008 arXiv:0802.0514v1[hep-ph]
[34] Behrend H J et al 1991 Z. Phys. C 49 401
[35] Savinov V et al 1997 arXiv:hep-ex/9707028v1
[36] Gronberg J et al 1998 Phys. Rev. D 57 33
[37] Huang T and Wu X G 2007 Eur. Phys. J. C 50 771
[38] Brodsky S J, Cao F G and Teramond G F 2011 Phys. Rev. D 84 033001
[39] Brodsky S J, Cao F G and Teramond G F 2011 Phys. Rev. D 84 075012

Related articles from Frontiers Journals
[1] SHI Chao-Yi, ZHU Jia-Qing, MA Zhi-Lei, LI Yun-De. Thermal Width for Heavy Quarkonium in the Static Limit[J]. Chin. Phys. Lett., 2015, 32(12): 041201
[2] BOROUN G. R., REZAEI B.. Analysis of the Longitudinal Structure Function FL from the Non-linear Regge Gluon Density Behavior at Low-x[J]. Chin. Phys. Lett., 2015, 32(11): 041201
[3] REN Chun-Fu, ZHANG Xiao-Bing, ZHANG Yi. Magnetic Effects in Color-Flavor Locked Superconducting Phase with the Additional Chiral Condensates[J]. Chin. Phys. Lett., 2014, 31(06): 041201
[4] LU Chang-Fang, LÜ Xiao-Fu. Influence of Quark Current Mass on Quark Condensate at Finite Temperature[J]. Chin. Phys. Lett., 2013, 30(9): 041201
[5] WANG Hong-Yan, LIU Guang-Zhou, WU Yao-Rui, XU Yan, ZHU Ming-Feng, BAO Tmurbagan, ZHAO En-Guang. Bulk Properties of Hybrid Stars with the Color-Flavor Locked Quark Matter Core[J]. Chin. Phys. Lett., 2013, 30(6): 041201
[6] JIA Duo-Jie, WANG Xiao-Wei, LIU Feng . Analytical Solution for the SU(2) Hedgehog Skyrmion and Static Properties of Nucleons[J]. Chin. Phys. Lett., 2010, 27(12): 041201
[7] WANG Xiao-Ming, ZHOU Bang-Rong. Complete Gluonic Phase in Two-Flavour Colour Superconductivity[J]. Chin. Phys. Lett., 2008, 25(4): 041201
[8] CHANG Sheng, LIU Ji-Feng, ZHUANG Peng-Fei. Nucleon Mass Splitting at Finite Isospin Chemical Potential[J]. Chin. Phys. Lett., 2008, 25(1): 041201
[9] G.R. Boroun, B. Rezaie. Calculation of the Longitudinal Structure Function from Regge-Like Behaviour of the Gluon Distribution Function in Leading Order Approximation at Low x[J]. Chin. Phys. Lett., 2007, 24(5): 041201
[10] DONG Yu-Bing. Proton Spin Structure Functions and Quark--Hadron Duality[J]. Chin. Phys. Lett., 2006, 23(9): 041201
[11] SHEN Zhen-Qi, ZHU Wei. Colour Dipole Picture for Deep Inelastic Scattering in the Collinear Factorization Scheme[J]. Chin. Phys. Lett., 2004, 21(10): 041201
[12] SHEN Qi-Xing, YU Hong, LI De-Min. Possibility to Search for Isoscalar 1-+ Exotic State in the Process J/ψ → ωVV[J]. Chin. Phys. Lett., 2001, 18(3): 041201
[13] YU Hong, SHEN Qi-xing. Moment Analysis of Process J/ψ → ρηπ and 1-+ Exotic Hybrid[J]. Chin. Phys. Lett., 1999, 16(7): 041201
[14] ZHU Wei, XUE Dali*. Antishadowing Corrections in the Evolution Equation of Quark Distributions[J]. Chin. Phys. Lett., 1994, 11(8): 041201
Viewed
Full text


Abstract