Chin. Phys. Lett.  2013, Vol. 30 Issue (4): 040701    DOI: 10.1088/0256-307X/30/4/040701
GENERAL |
A New Mach–Zehnder Interferometer to Measure Light Beam Dispersion and Phase Shift
YANG Xu-Dong**
School of Applied Science, Taiyuan University of Science and Technology, Taiyuan 030024
Cite this article:   
YANG Xu-Dong 2013 Chin. Phys. Lett. 30 040701
Download: PDF(598KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A novel Mach–Zehnder (M-Z) interferometer used to measure the dispersion and phase shift of a light beam is reported. The interferometer consists of two identical beam displacing polarizers, which makes two beams of interference light pass through the same optical device and greatly improves the stability of the M-Z interferometer. The basic method of dispersion and phase measuring through the present interferometer is introduced in detail, and the actual application is demonstrated by a specific example. Because the measuring of dispersion and phase shift is the heating point in the field of optics, it is obvious that the M-Z interferometer will have important applications in aspects of optics, especially quantum optics and optical information processing.
Received: 10 December 2012      Published: 28 April 2013
PACS:  07.60.Ly (Interferometers)  
  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  42.15.Eq (Optical system design)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/4/040701       OR      https://cpl.iphy.ac.cn/Y2013/V30/I4/040701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YANG Xu-Dong
[1] Lu D, Liu C, Zhou H and Zhou J 2006 Phys. Exp. 26 40 (in Chinese)
[2] Takashi M, Tadayoshi K, Katsuhiro S and Katsuyoshi I 1998 IEEE J. Lightwave Technol. 16 265
[3] Khilo A, Sorace C M and K ?rtner F X 2011 Opt. Express 19 4485
[4] Ackerman E 1999 IEEE Trans. Microwave Theory Tech. 47 2271
[5] Green W M, Rooks M J, Sekaric L and Vlasov Y A 2007 Opt. Express 15 17106
[6] Liao L, Samara-Rubio D, Morse M, Liu A, Hodge D, Rubin D, Keil U and Franck T 2005 Opt. Express 13 3129
[7] Wang H, Zhou W, Wang H, Fan F and Chen L 2011 Transducer Microsyst. Technol. 30 73 (in Chinese)
[8] Xiao M, Li Y, Jin S and Gea-Banacloche J 1995 Phys. Rev. Lett. 74 666
[9] Han Y, Xiao J, Liu Y, Zhang C, Wang H, Xiao M and Peng K 2008 Phys. Rev. A 77 023824
[10] Li S, Yang X, Cao X, Zhang C, Xie C and Wang H 2008 Phys. Rev. Lett. 101 073602
[11] Yang X, Li S, Zhang C and Wang H 2009 J. Opt. Soc. Am. B 26 1423
[12] Nemoto K and Munro W J 2004 Phys. Rev. Lett. 93 250502
[13] Barrett S D , Kok P, Nemoto K, Beausoleil R G, Munro W J and Spiller T P 2005 Phys. Rev. A 71 060302(R)
[14] Munro W J, Nemoto K and Spiller T P 2005 New J. Phys. 7 137
Related articles from Frontiers Journals
[1] Dahi Ibrahim and Daesuk Kim. Direct Spatially Resolved Snapshot Interferometric Phase and Stokes Vector Extraction by Using an Imaging PolarCam[J]. Chin. Phys. Lett., 2020, 37(7): 040701
[2] Junzhao Liu, Yanjun Liu, Jing Lu. Complementarity via Minimum Error Measurement in a Two-Path Interferometer[J]. Chin. Phys. Lett., 2019, 36(5): 040701
[3] Yu-Long Cao, Fei Yang, Dan Xu, Qing Ye, Hai-Wen Cai, Zu-Jie Fang. Phase-Sensitive Optical Time-Domain Reflectometer Based on a 120$^{\circ}$-Phase-Difference Michelson Interferometer[J]. Chin. Phys. Lett., 2016, 33(05): 040701
[4] XU Ling, TAN Yi-Dong, ZHANG Shu-Lian, SUN Li-Qun. Measurement of Refractive Index Ranging from 1.42847 to 2.48272 at 1064 nm Using a Quasi-Common-Path Laser Feedback System[J]. Chin. Phys. Lett., 2015, 32(09): 040701
[5] ZHENG Fa-Song, DING Ying-Chun, TAN Yi-Dong, LIN Jing, ZHANG Shu-Lian. The Approach of Compensation of Air Refractive Index in Thermal Expansion Coefficients Measurement Based on Laser Feedback Interferometry[J]. Chin. Phys. Lett., 2015, 32(07): 040701
[6] TAN Yi-Dong, ZHANG Song, REN Zhou, ZHANG Yong-Qin, ZHANG Shu-Lian. Real-Time Liquid Evaporation Rate Measurement Based on a Microchip Laser Feedback Interferometer[J]. Chin. Phys. Lett., 2013, 30(12): 040701
[7] WANG Qi, ZHU Xiao-Feng, YUAN Xiao-Wen, CHEN Chang-Qing, LUO Xiang-Dong, ZHANG Bo. Sub-Wavelength Near-Field Metal Detection using an On-Chip Spintronic Technique[J]. Chin. Phys. Lett., 2013, 30(12): 040701
[8] CHEN Wen-Xue, ZHANG Shu-Lian, LONG Xing-Wu. Multi-Wavelength Conversion Based on Single Wavelength Results in Phase Retardation Measurement[J]. Chin. Phys. Lett., 2013, 30(3): 040701
[9] XU Ben, LI Jian-Qing, LI Yi, DONG Xin-Yong. A Thin-Core Fiber Modal Interferometer for Liquid-Level Sensing[J]. Chin. Phys. Lett., 2012, 29(10): 040701
[10] ZENG Zhao-Li, ZHANG Shu-Lian, TAN Yi-Dong, CHEN Wen-Xue, LI Yan. Phase Tuning Characteristics of a Double-Longitudinal-Mode He-Ne Laser with Optical Feedback[J]. Chin. Phys. Lett., 2012, 29(9): 040701
[11] XU Ben, LI Yi, DONG Xin-Yong, JIN Shang-Zhong, ZHANG Zai-Xuan. Highly Sensitive Refractive Index Sensor Based on a Cladding-Etched Thin-Core Fiber Sandwiched between Two Single-Mode Fibers[J]. Chin. Phys. Lett., 2012, 29(9): 040701
[12] MIAO Liang**,ZUO Du-Luo,CHENG Zu-Hai. A Terahertz Wavemeter Based on a Fabry–Perot Interferometer Composed of Two Identical Ge Etalons[J]. Chin. Phys. Lett., 2012, 29(5): 040701
[13] WANG Ya-Ping,**,WU Chong-Qing,YAN Ping. Polarization Stability of a Double-Loop Interferometer Based on a Planar 3×3 Coupler[J]. Chin. Phys. Lett., 2012, 29(4): 040701
[14] HU Xiao-Gen**, LI Yu-He**, LIN Hao-Shan, WANG Dong-Sheng, QI Xin . Second Harmonic Generation in Scanning Probe Microscopy for Edge Localization[J]. Chin. Phys. Lett., 2011, 28(4): 040701
[15] CUI Bo, WU Song-Lin, YI Xue-Xi. Mean-Field Dynamics of a Two-Mode Bose-Einstein Condensate Subject to Decoherence[J]. Chin. Phys. Lett., 2010, 27(7): 040701
Viewed
Full text


Abstract