Chin. Phys. Lett.  2013, Vol. 30 Issue (4): 040305    DOI: 10.1088/0256-307X/30/4/040305
GENERAL |
Improvement of Controlled Bidirectional Quantum Direct Communication Using a GHZ State
YE Tian-Yu**, JIANG Li-Zhen
College of Information & Electronic Engineering, Zhejiang Gongshang University, Hangzhou 310018
Cite this article:   
YE Tian-Yu, JIANG Li-Zhen 2013 Chin. Phys. Lett. 30 040305
Download: PDF(385KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The security of controlled bidirectional quantum direct communication using a GHZ state [Chin. Phys. Lett. 23 (2006) 1680] is analyzed. It turns out that the MX protocol has the problem of definite information leakage, i.e., the first bit of a secret message from any communication party is always leaked out without any active attack after the controller's announcement of measurement results. We put forward two approaches to improve this. The first is to merely modify the encoding rule of the MX protocol, while the second is to use a Bell state as the quantum resource instead of a GHZ state. Both our approaches can ensure that all the bits of secret messages from two communication parties are not leaked out after the controller's announcement of measurement results. Moreover, the controlled bidirectional quantum secure direct communication protocol based on the second approach is more convenient to implement than the MX protocol, since it merely uses a Bell state as the quantum resource and only needs to perform the Bell-basis measurement.
Received: 24 January 2013      Published: 28 April 2013
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/4/040305       OR      https://cpl.iphy.ac.cn/Y2013/V30/I4/040305
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YE Tian-Yu
JIANG Li-Zhen
[1] Bennett C H and Brassard G 1984 Proc. Int. Conf. Comput. Systems & Signal Processing (Bangalore, India 9–12 December 1984) (New York: IEEE) p 175
[2] Bennett C H, Brassard G and Mermin N D 1992 Phys. Rev. Lett. 68 557
[3] Cabell A 2000 Phys. Rev. Lett. 85 5635
[4] Long G L and Liu X S 2002 Phys. Rev. A 65 032302
[5] Bostrom K and Felbinger T 2002 Phys. Rev. Lett. 89 187902
[6] Deng F G, Long G L and Liu X S 2003 Phys. Rev. A 68 042317
[7] Cai Q Y and Li B W 2004 Phys. Rev. A 69 054301
[8] Chen X B, Wang T Y, Du J Z, Wen Q Y and Zhu F C 2008 Int. J. Quantum Inf. 6 543
[9] Chen X B, Wen Q Y, Guo F Z, Sun Y, Xu G and Zhu F C 2008 Int. J. Quantum Inf. 6 899
[10] Nguyen B A 2004 Phys. Lett. A 328 6
[11] Man Z X, Zhang Z J and Li Y 2005 Chin. Phys. Lett. 22 22
[12] Jin X R, Ji X, Zhang Y Q, Zhang S, Zhang S, Hong S K, Yeon K H and Um C I 2006 Phys. Lett. A 354 67
[13] Man Z X and Xia Y J 2007 Chin. Phys. Lett. 24 15
[14] Man Z X and Xia Y J 2006 Chin. Phys. Lett. 23 1680
[15] Li Z K 2007 J. Yanbian University (Natural Science) 33 249 (in Chinese)
Related articles from Frontiers Journals
[1] Yanxin Han, Zhongqi Sun, Tianqi Dou, Jipeng Wang, Zhenhua Li, Yuqing Huang, Pengyun Li, and Haiqiang Ma. Twin-Field Quantum Key Distribution Protocol Based on Wavelength-Division-Multiplexing Technology[J]. Chin. Phys. Lett., 2022, 39(7): 040305
[2] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 040305
[3] Jian Li, Jia-Li Zhu, Jiang Gao, Zhi-Guang Pang, and Qin Wang. Semi-Measurement-Device-Independent Quantum State Tomography[J]. Chin. Phys. Lett., 2022, 39(7): 040305
[4] Luyu Huang , Yichen Zhang, and Song Yu . Continuous-Variable Measurement-Device-Independent Quantum Key Distribution with One-Time Shot-Noise Unit Calibration[J]. Chin. Phys. Lett., 2021, 38(4): 040305
[5] Hao Cao, Wenping Ma, Ge Liu, Liangdong Lü, Zheng-Yuan Xue. Quantum Secure Multiparty Computation with Symmetric Boolean Functions[J]. Chin. Phys. Lett., 2020, 37(5): 040305
[6] Yu Mao, Qi Liu, Ying Guo, Hang Zhang, Jian Zhou. Four-State Modulation in Middle of a Quantum Channel for Continuous-Variable Quantum Key Distribution Protocol with Noiseless Linear Amplifier[J]. Chin. Phys. Lett., 2019, 36(10): 040305
[7] Guang-Zhao Tang, Shi-Hai Sun, Chun-Yan Li. Experimental Point-to-Multipoint Plug-and-Play Measurement-Device-Independent Quantum Key Distribution Network[J]. Chin. Phys. Lett., 2019, 36(7): 040305
[8] Ya-Hui Gan, Yang Wang, Wan-Su Bao, Ru-Shi He, Chun Zhou, Mu-Sheng Jiang. Finite-Key Analysis for a Practical High-Dimensional Quantum Key Distribution System Based on Time-Phase States[J]. Chin. Phys. Lett., 2019, 36(4): 040305
[9] Min Xiao, Di-Fang Zhang. Practical Quantum Private Query with Classical Participants[J]. Chin. Phys. Lett., 2019, 36(3): 040305
[10] Cai-Lang Xie, Ying Guo, Yi-Jun Wang, Duan Huang, Ling Zhang. Security Simulation of Continuous-Variable Quantum Key Distribution over Air-to-Water Channel Using Monte Carlo Method[J]. Chin. Phys. Lett., 2018, 35(9): 040305
[11] Jia-Ji Li, Yang Wang, Hong-Wei Li, Peng Peng, Chun Zhou, Mu-Sheng Jiang, Hong-Xin Ma, Lin-Xi Feng, Wan-Su Bao. Passive Decoy-State Reference-Frame-Independent Quantum Key Distribution with Heralded Single-Photon Source[J]. Chin. Phys. Lett., 2017, 34(12): 040305
[12] Sheng-Kai Liao, Jin Lin, Ji-Gang Ren, Wei-Yue Liu, Jia Qiang, Juan Yin, Yang Li, Qi Shen, Liang Zhang, Xue-Feng Liang, Hai-Lin Yong, Feng-Zhi Li, Ya-Yun Yin, Yuan Cao, Wen-Qi Cai, Wen-Zhuo Zhang, Jian-Jun Jia, Jin-Cai Wu, Xiao-Wen Chen, Shan-Cong Zhang, Xiao-Jun Jiang, Jian-Feng Wang, Yong-Mei Huang, Qiang Wang, Lu Ma, Li Li, Ge-Sheng Pan, Qiang Zhang, Yu-Ao Chen, Chao-Yang Lu, Nai-Le Liu, Xiongfeng Ma, Rong Shu, Cheng-Zhi Peng, Jian-Yu Wang, Jian-Wei Pan. Space-to-Ground Quantum Key Distribution Using a Small-Sized Payload on Tiangong-2 Space Lab[J]. Chin. Phys. Lett., 2017, 34(9): 040305
[13] Rui-Ke Chen, Wan-Su Bao, Hai-Ze Bao, Chun Zhou, Mu-Sheng Jiang, Hong-Wei Li. Asymmetric Decoy State Measurement-Device-Independent Quantum Cryptographic Conferencing[J]. Chin. Phys. Lett., 2017, 34(8): 040305
[14] Ying-Ying Zhang, Wan-Su Bao, Hong-Wei Li, Chun Zhou, Yang Wang, Mu-Sheng Jiang. Application of a Discrete Phase-Randomized Coherent State Source in Round-Robin Differential Phase-Shift Quantum Key Distribution[J]. Chin. Phys. Lett., 2017, 34(8): 040305
[15] Ying-Ying Zhang, Wan-Su Bao, Chun Zhou, Hong-Wei Li, Yang Wang, Mu-Sheng Jiang. Round-Robin Differential Phase Shift with Heralded Single-Photon Source[J]. Chin. Phys. Lett., 2017, 34(4): 040305
Viewed
Full text


Abstract