Chin. Phys. Lett.  2013, Vol. 30 Issue (4): 040301    DOI: 10.1088/0256-307X/30/4/040301
GENERAL |
A Quantum Communication Protocol Transferring Unknown Photons Using Path-Polarization Hybrid Entanglement
Jino Heo1,2, Chang Ho Hong1,2, Jong In Lim1,2, Hyung Jin Yang1,3**
1Graduate School of Information Security, Korea University, Anam 5-ga Sungbuk-gu, Seoul, South Korea
2Center for Information Security Technologies(CIST), Korea University, Seoul, South Korea
3Department of Physics, Korea University, Yunki-gun Chochiwon, Choongnam, South Korea
Cite this article:   
Jino Heo, Chang Ho Hong, Jong In Lim et al  2013 Chin. Phys. Lett. 30 040301
Download: PDF(429KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose a protocol for transferring photons of unknown states to a distant location using path-polarization hybrid entanglement. Our protocol uses a polarizing beam splitter (PBS), a beam splitter (BS), a CNOT-operation, four unitary operations and polarizing detectors. In our protocol, the hybrid entangled states are generated by the PBS, and it is transmitted through the quantum channel containing the BS and CNOT-gate. The measurement results of the polarizing detectors and classical communications determine which unitary operation will be used in the last step for recovering initial states. The security of the channel in transmitting unknown photons between two parties is confirmed by the results of the measurement of each target photon in the control mode.
Received: 07 December 2012      Published: 28 April 2013
PACS:  03.67.Dd (Quantum cryptography and communication security)  
  03.67.Hk (Quantum communication)  
  03.67.Ac (Quantum algorithms, protocols, and simulations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/4/040301       OR      https://cpl.iphy.ac.cn/Y2013/V30/I4/040301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Jino Heo
Chang Ho Hong
Jong In Lim
Hyung Jin Yang
[1] Ekert A K 1991 Phys. Rev. Lett. 67 661
[2] Deng F G and Long G L 2003 Phys. Rev. A 68 042315
[3] Song D 2004 Phys. Rev. A 69 034301
[4] Hong C H, Heo J O, Khym G L, Lim J I, Hong S K and Yang H J 2010 Opt. Commun. 283 2644
[5] Hong C H, Heo J O, Lim J I and Yang H J 2012 Chin. Phys. Lett. 29 050303
[6] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W 1993 Phys. Rev. Lett. 70 1895
[7] Bostrom K and Felbinger F 2002 Phys. Rev. Lett. 89 187902
[8] Li S M, Wang A M and Huang X 2007 Chin. Phys. Lett. 24 2479
[9] Hong C H, Lim J I, Kim J I and Yang H J 2010 J. Korean Phys. Soc. 56 1733
[10] Hong C H, Heo J O, Lim J I and Yang H J 2012 J. Korean Phys. Soc. 61 1
[11] Fang X M and Li J B 2006 Chin. Phys. Lett. 23 775
[12] Zhou P L, Li C Y and Xi H 2007 Chin. Phys. B 16 2149
[13] Boschi D, Branca S, De Martini F, Hardy L and Popescu S 1998 Phys. Rev. Lett. 80 1121
[14] Barreiro J T, Wei T C and Kwiat P G 2008 Nat. Phys. 4 282
[15] Hasegawa Y, Loidl R, Badurek G, Baron M and Rauch H 2003 Nature 425 45
[16] Adhikari S, Majumdar A S, Home D and Pan A K 2010 Europhys. Lett. 89 10005
[17] Sun Y, Wen Q Y and Yuan Z 2011 Opt. Commun. 284 527
[18] Blasone M, Dell'Anno F, De Siena S and Illuminati F 2009 Europhys. Lett. 85 50002
[19] Pramanik T, Adhikari S, Majumdar A S, Home D and Pan A K 2010 Phys. Lett. A 374 1121
[20] Michler M, Weinfurter H and Zukowski M 2000 Phys. Rev. Lett. 84 5457
[21] Basu S, Bandyopadhyay S, Kar G and Home D 2001 Phys. Lett. A 279 281
[22] Nemoto K and Munro W J 2004 Phys. Rev. Lett. 93 250502
[23] Lin Q and Li J 2009 Phys. Rev. A 79 022301
[24] Guo Q, Bai J, Cheng L Y, Shao X Q, Wang H F and Zhang S 2011 Phys. Rev. A 83 054303
[25] Barrett S D and Milburn G J 2006 Phys. Rev. A 74 060302
[26] Munro W J, Nemoto K and Spiller T P 2005 New J. Phys. 7 137
[27] Louis S G, Munro W J, Spiller T P and Nemoto K 2008 Phys. Rev. A 78 022326
[28] Xiu X M, Dong L, Gao Y J and Yi X X 2012 Quantum Inf. Comput. 12 0159
[29] Jian Z, Ming Y, Yan L and Liang C Z 2009 Chin. Phys. Lett. 26 100301
[30] Sheng Y B, Deng F G and Zhou H Y 2008 Phys. Rev. A 77 042308
[31] Grosshans F and Grangier P 2002 arXiv:quant-ph/0204127
[32] Grosshans F, Assche G V, Wenger J, Brouri R, Cerf N J and Grangier P 2003 Nature 421 238
[33] Poizat J P, Roch J F and Grangier P 1994 Ann. Phys. 19 265
[34] Grangier P, Levenson J A and Poizat J P 1998 Nature 396 537
Related articles from Frontiers Journals
[1] Yanxin Han, Zhongqi Sun, Tianqi Dou, Jipeng Wang, Zhenhua Li, Yuqing Huang, Pengyun Li, and Haiqiang Ma. Twin-Field Quantum Key Distribution Protocol Based on Wavelength-Division-Multiplexing Technology[J]. Chin. Phys. Lett., 2022, 39(7): 040301
[2] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 040301
[3] Jian Li, Jia-Li Zhu, Jiang Gao, Zhi-Guang Pang, and Qin Wang. Semi-Measurement-Device-Independent Quantum State Tomography[J]. Chin. Phys. Lett., 2022, 39(7): 040301
[4] Luyu Huang , Yichen Zhang, and Song Yu . Continuous-Variable Measurement-Device-Independent Quantum Key Distribution with One-Time Shot-Noise Unit Calibration[J]. Chin. Phys. Lett., 2021, 38(4): 040301
[5] Hao Cao, Wenping Ma, Ge Liu, Liangdong Lü, Zheng-Yuan Xue. Quantum Secure Multiparty Computation with Symmetric Boolean Functions[J]. Chin. Phys. Lett., 2020, 37(5): 040301
[6] Yu Mao, Qi Liu, Ying Guo, Hang Zhang, Jian Zhou. Four-State Modulation in Middle of a Quantum Channel for Continuous-Variable Quantum Key Distribution Protocol with Noiseless Linear Amplifier[J]. Chin. Phys. Lett., 2019, 36(10): 040301
[7] Guang-Zhao Tang, Shi-Hai Sun, Chun-Yan Li. Experimental Point-to-Multipoint Plug-and-Play Measurement-Device-Independent Quantum Key Distribution Network[J]. Chin. Phys. Lett., 2019, 36(7): 040301
[8] Ya-Hui Gan, Yang Wang, Wan-Su Bao, Ru-Shi He, Chun Zhou, Mu-Sheng Jiang. Finite-Key Analysis for a Practical High-Dimensional Quantum Key Distribution System Based on Time-Phase States[J]. Chin. Phys. Lett., 2019, 36(4): 040301
[9] Min Xiao, Di-Fang Zhang. Practical Quantum Private Query with Classical Participants[J]. Chin. Phys. Lett., 2019, 36(3): 040301
[10] Cai-Lang Xie, Ying Guo, Yi-Jun Wang, Duan Huang, Ling Zhang. Security Simulation of Continuous-Variable Quantum Key Distribution over Air-to-Water Channel Using Monte Carlo Method[J]. Chin. Phys. Lett., 2018, 35(9): 040301
[11] Jia-Ji Li, Yang Wang, Hong-Wei Li, Peng Peng, Chun Zhou, Mu-Sheng Jiang, Hong-Xin Ma, Lin-Xi Feng, Wan-Su Bao. Passive Decoy-State Reference-Frame-Independent Quantum Key Distribution with Heralded Single-Photon Source[J]. Chin. Phys. Lett., 2017, 34(12): 040301
[12] Sheng-Kai Liao, Jin Lin, Ji-Gang Ren, Wei-Yue Liu, Jia Qiang, Juan Yin, Yang Li, Qi Shen, Liang Zhang, Xue-Feng Liang, Hai-Lin Yong, Feng-Zhi Li, Ya-Yun Yin, Yuan Cao, Wen-Qi Cai, Wen-Zhuo Zhang, Jian-Jun Jia, Jin-Cai Wu, Xiao-Wen Chen, Shan-Cong Zhang, Xiao-Jun Jiang, Jian-Feng Wang, Yong-Mei Huang, Qiang Wang, Lu Ma, Li Li, Ge-Sheng Pan, Qiang Zhang, Yu-Ao Chen, Chao-Yang Lu, Nai-Le Liu, Xiongfeng Ma, Rong Shu, Cheng-Zhi Peng, Jian-Yu Wang, Jian-Wei Pan. Space-to-Ground Quantum Key Distribution Using a Small-Sized Payload on Tiangong-2 Space Lab[J]. Chin. Phys. Lett., 2017, 34(9): 040301
[13] Rui-Ke Chen, Wan-Su Bao, Hai-Ze Bao, Chun Zhou, Mu-Sheng Jiang, Hong-Wei Li. Asymmetric Decoy State Measurement-Device-Independent Quantum Cryptographic Conferencing[J]. Chin. Phys. Lett., 2017, 34(8): 040301
[14] Ying-Ying Zhang, Wan-Su Bao, Hong-Wei Li, Chun Zhou, Yang Wang, Mu-Sheng Jiang. Application of a Discrete Phase-Randomized Coherent State Source in Round-Robin Differential Phase-Shift Quantum Key Distribution[J]. Chin. Phys. Lett., 2017, 34(8): 040301
[15] Ying-Ying Zhang, Wan-Su Bao, Chun Zhou, Hong-Wei Li, Yang Wang, Mu-Sheng Jiang. Round-Robin Differential Phase Shift with Heralded Single-Photon Source[J]. Chin. Phys. Lett., 2017, 34(4): 040301
Viewed
Full text


Abstract