CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
First-Principles Study of Hydrogen Binding Property in Alkaline-Earth (Be, Mg, Ca) Metal-Doped Closo-Boranes |
REN Juan 1, ZHANG Hong1**, CHENG Xin-Lu2 |
1College of Physical Science and Technology, Sichuan University, Chengdu 610065 2Institution of Atomic and Molecular Physics, Sichuan University, Chengdu 610065
|
|
Cite this article: |
REN Juan, ZHANG Hong, CHENG Xin-Lu 2013 Chin. Phys. Lett. 30 038801 |
|
|
Abstract Using the first-principles method based on density functional theory (DFT), we investigate the stability of alkaline-earth (AE) metal-doped (AE = Be, Mg, and Ca) dodecaborane(12) and the interactions of H2 molecules with the B12H12Be, B12H12Mg, and B12H12Ca clusters. Our calculated results show that the metal sites carry a partial negative/positive charge. The binding energies of metal cations and the boron framework are calculated to be 28.21, 21.92, and 18.79 eV, respectively, which are large enough to prevent metal atoms clustering and ensure the stability toward recyclability. These charge surfaces created at the metal site, which can induce a dipole in the molecular hydrogen, can bind to the hydrogen molecule through the ion-quadrupole as well as through ion-induced dipole interactions. The results show that B12H12Mg and B12H12Ca complexes can store up to 3.52 and 5.26wt% hydrogen, respectively. These studies may provide guidance for designing new 3D hydrogen storage materials with the icosahedra twelve-member boron cluster doped with AE metals as the building blocks.
|
|
Received: 25 June 2012
Published: 29 March 2013
|
|
|
|
|
|
[1] Dresselhaus M S and Thomas I L 2001 Nature 414 332 [2] Züttel A, Wenger P, Sudan P, Mauron P and Orimo S 2004 Mater. Sci. Eng. B 108 9 [3] Cohen R L and Wernick J H 1981 Science 214 1081 [4] Bhatia S K and Myers A L 2006 Langmuir 22 1688 [5] Srinivasu K, Chandrakumar K R S and Ghosh S K 2008 Phys. Chem. Chem. Phys. 10 5832 [6] Gagliardi L and Pyykk?P 2004 J. Am. Chem. Soc. 126 15014 [7] Barbatti M, Jalbert G and Nascimento M A C 2001 J. Chem. Phys. 114 2213 [8] Liu J J, Yu J M and Ge Q F 2011 J. Phys. Chem. C 115 2522 [9] Srinivasu K and Ghosh S K 2011 J. Phys. Chem. C 115 16984 [10] Yildirim T and Ciraci S 2005 Phys. Rev. Lett. 94 175501 [11] Sun Q, Wang Q, Jena P and Kawazoe Y 2005 J. Am. Chem. Soc. 127 14582 [12] Durgun E, Ciraci S, Zhou W and Yildirim T 2006 Phys. Rev. Lett. 97 226102 [13] Zhou W, Yildirim T, Durgun E and Ciraci S 2007 Phys. Rev. B 76 085434 [14] Sun Q, Jena P, Wang Q and Marquez M 2006 J. Am. Chem. Soc. 128 9741 [15] Chandrakumar K R S and Ghosh S K 2008 Nano Lett. 8 13 [16] Blomqvist A, Araújo C M, Srepusharawoot P and Ahuja R 2007 Proc. Natl. Acad. Sci. USA 104 20173 [17] Srinivasu K and Ghosh S K 2011 J. Phys. Chem. C 115 1450 [18] Stock A and Massenez C 1912 Ber. Dtsch. Chem. Ges. 45 3539 [19] Wade K 1971 J. Chem. Soc. D. Chem. Commun. 15 792 [20] Mingos D M P 1972 Nat. Phys. Sci. 236 99 [21] Orimo S I and Nakamori Y 2006 Appl. Phys. Lett. 89 021920 [22] Li S, Willis M and Jena P 2010 J. Phys. Chem. C 114 16849 [23] Delley B 1990 J. Chem. Phys. 92 508 [24] Delley B 2000 J. Chem. Phys. 113 7756 [25] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865 [26] van den Berg A W C, Bromley S T, Wojdel J C and Jansen J C 2005 Phys. Rev. B 72 155428 [27] Khantha M, Cordero N A, Molina L M, Alonso J A and Girifalco L A 2004 Phys. Rev. B 70 125422 [28] Du A J and Smith S C 2005 Nanotechnology 16 2118 [29] Frisch M J, Trucks G W, Schlegel H B et al 2003 Gaussian 03 Revision B.02 (Pittsburgh, PA: Gaussian, Inc.) [30] Türker L 2002 J. Mol. Struc.: Theochem. 577 205 [31] Manolopoulos D E, May J C and Down S E 1991 Chem. Phys. Lett. 181 105 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|