CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
A High Performance In0.7Ga0.3As MOSFET with an InP Barrier Layer for Radio-Frequency Application |
CHANG Hu-Dong1, LIU Gui-Ming1, SUN Bing1, ZHAO Wei1, WANG Wen-Xin2, LIU Hong-Gang1** |
1Microwave Device and IC Department, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 2Institute of Physics, Chinese Academy of Sciences, Beijing 100190
|
|
Cite this article: |
CHANG Hu-Dong, LIU Gui-Ming, SUN Bing et al 2013 Chin. Phys. Lett. 30 037303 |
|
|
Abstract We demonstrate a high performance implant-free n-type In0.7Ga0.3As channel MOSFET with a 4-nm InP barrier layer fabricated on a semi-insulating substrate employing a 10-nm Al2O3 as gate dielectric. The maximum effective channel mobility is 1862 cm2/V?s extracted by the split C–V method. Devices with 0.8 μm gate length exhibit a peak extrinsic transconductance of 85 mS/mm and a drive current of more than 200 mA/mm. A short-circuit current gain cutoff frequency fT of 24.5 GHz and a maximum oscillation frequency fmax of 54 GHz are achieved for the 0.8 μm gate-length device. The research is helpful to obtain higher performance In0.7Ga0.3As MOSFETs for radio-frequency applications.
|
|
Received: 30 September 2012
Published: 29 March 2013
|
|
PACS: |
73.40.Qv
|
(Metal-insulator-semiconductor structures (including semiconductor-to-insulator))
|
|
71.61.Ey
|
|
|
77.84.Bw
|
(Elements, oxides, nitrides, borides, carbides, chalcogenides, etc.)
|
|
|
|
|
[1] Feng Q, Hao Y, Yue Y Z 2008 Acta Phys. Sin. 57 1886 (in Chinese) [2] Lin T D, Chiu H C, Chang P, Chang Y H, Wu Y D, Hong M and Kwo J 2010 Solid-State Electron. 54 919 [3] Xuan Y, Wu Y Q and Ye P D 2008 IEEE Electron Device Lett. 29 294 [4] Xiang W F, Lu H B, Chen Z H, He M, Lu X B, Liu L F, Guo H Z and Zhou Y L 2005 Chin. Phys. Lett. 22 182 [5] Yang Y, Li G P, Gao Y and Liu J 2009 Chin. Phys. Lett. 26 027801 [6] Mao W, Zhang J C, Xue J S, Hao Y, Ma X H, Wang C, Liu H X, Xu S R, Yang L A, Bi Z W, Liang X Z, Zhang J F and Kuang X W 2010 Chin. Phys. Lett. 27 128501 [7] Lin T D, Chang P, Chiu H C, Hong M, Kwo Y, Lin Y S and Shawn S H 2010 J. Vac. Sci. Technol. B 28 C3H14 [8] Xiu X and Patrick F 2010 CS MANTECH Conference (Portland, USA 17–20 May 2010) p 207 [9] Ok I, Kim H, Zhang M, Zhu F, Zhao H, Park S, Yum J, Garcia D, Majhi P, Goel N, Tsai W, Gaspe C K, Santos M B and Lee J C 2008 Appl. Phys. Lett. 92 202903 [10] Ren F, Kuo J M, Hong M, Hobson W S, Lothian J R, Lin J, Tsai H S, Mannaerts J P, Kwo J, Chu S N G, Chen Y K and Cho A Y 1998 IEEE Electron Device Lett. 19 309 [11] Passlack M, Zurcher P, Rajagopalan K, Droopad R, Abrokwah J, Tutt M, Park Y B, Johnson E, Hartin O, Zlotnicka A, Fejes P, Hill R J W, Moran D A J, Li X, Zhou H, Macintyre D, Thoms S, Asenov A, Kalna K and Thayne I G 2007 IEDM Tech. Dig. P 621 [12] Zhao H, Chen Y T, Yum J H, Wang Y Z, Goel N and Lee J C 2009 Appl. Phys. Lett. 94 193502 [13] Xue F, Jiang A, Zhao H, Chen Y T, Wang Y Z, Zhou F and Lee J 2012 IEEE Electron Device Lett. 33 1255 [14] Lin H C, Yang T, Sharfi H, Kim S K, Xuan Y, Shen T, Mohammadi S and Ye P D 2007 Appl. Phys. Lett. 91 212101 [15] Kazzi M E, Czornomaz L, Rossel C, Rossel C, Gerl C, Caimi D, Siegwart H, Fompeyrine J and Marchiori C 2012 Appl. Phys. Lett. 100 063505 [16] Taking S, MacFlane D and Wasige E 2011 IEEE Trans. Electron Devices 58 1418 [17] Menozzi R, Piazzi A and Contini F 1996 IEEE Trans. Circuits Syst. I 43 839 [18] Matsuzaki H, Maruyama T, Koasugi T, Takahashi H, Tokumitsu M and Enoki T 2007 IEEE Trans. Electron Devices 54 378 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|