Chin. Phys. Lett.  2013, Vol. 30 Issue (3): 037303    DOI: 10.1088/0256-307X/30/3/037303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
A High Performance In0.7Ga0.3As MOSFET with an InP Barrier Layer for Radio-Frequency Application
CHANG Hu-Dong1, LIU Gui-Ming1, SUN Bing1, ZHAO Wei1, WANG Wen-Xin2, LIU Hong-Gang1**
1Microwave Device and IC Department, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029
2Institute of Physics, Chinese Academy of Sciences, Beijing 100190
Cite this article:   
CHANG Hu-Dong, LIU Gui-Ming, SUN Bing et al  2013 Chin. Phys. Lett. 30 037303
Download: PDF(755KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We demonstrate a high performance implant-free n-type In0.7Ga0.3As channel MOSFET with a 4-nm InP barrier layer fabricated on a semi-insulating substrate employing a 10-nm Al2O3 as gate dielectric. The maximum effective channel mobility is 1862 cm2/V?s extracted by the split CV method. Devices with 0.8 μm gate length exhibit a peak extrinsic transconductance of 85 mS/mm and a drive current of more than 200 mA/mm. A short-circuit current gain cutoff frequency fT of 24.5 GHz and a maximum oscillation frequency fmax of 54 GHz are achieved for the 0.8 μm gate-length device. The research is helpful to obtain higher performance In0.7Ga0.3As MOSFETs for radio-frequency applications.
Received: 30 September 2012      Published: 29 March 2013
PACS:  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
  71.61.Ey  
  77.84.Bw (Elements, oxides, nitrides, borides, carbides, chalcogenides, etc.)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/3/037303       OR      https://cpl.iphy.ac.cn/Y2013/V30/I3/037303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHANG Hu-Dong
LIU Gui-Ming
SUN Bing
ZHAO Wei
WANG Wen-Xin
LIU Hong-Gang
[1] Feng Q, Hao Y, Yue Y Z 2008 Acta Phys. Sin. 57 1886 (in Chinese)
[2] Lin T D, Chiu H C, Chang P, Chang Y H, Wu Y D, Hong M and Kwo J 2010 Solid-State Electron. 54 919
[3] Xuan Y, Wu Y Q and Ye P D 2008 IEEE Electron Device Lett. 29 294
[4] Xiang W F, Lu H B, Chen Z H, He M, Lu X B, Liu L F, Guo H Z and Zhou Y L 2005 Chin. Phys. Lett. 22 182
[5] Yang Y, Li G P, Gao Y and Liu J 2009 Chin. Phys. Lett. 26 027801
[6] Mao W, Zhang J C, Xue J S, Hao Y, Ma X H, Wang C, Liu H X, Xu S R, Yang L A, Bi Z W, Liang X Z, Zhang J F and Kuang X W 2010 Chin. Phys. Lett. 27 128501
[7] Lin T D, Chang P, Chiu H C, Hong M, Kwo Y, Lin Y S and Shawn S H 2010 J. Vac. Sci. Technol. B 28 C3H14
[8] Xiu X and Patrick F 2010 CS MANTECH Conference (Portland, USA 17–20 May 2010) p 207
[9] Ok I, Kim H, Zhang M, Zhu F, Zhao H, Park S, Yum J, Garcia D, Majhi P, Goel N, Tsai W, Gaspe C K, Santos M B and Lee J C 2008 Appl. Phys. Lett. 92 202903
[10] Ren F, Kuo J M, Hong M, Hobson W S, Lothian J R, Lin J, Tsai H S, Mannaerts J P, Kwo J, Chu S N G, Chen Y K and Cho A Y 1998 IEEE Electron Device Lett. 19 309
[11] Passlack M, Zurcher P, Rajagopalan K, Droopad R, Abrokwah J, Tutt M, Park Y B, Johnson E, Hartin O, Zlotnicka A, Fejes P, Hill R J W, Moran D A J, Li X, Zhou H, Macintyre D, Thoms S, Asenov A, Kalna K and Thayne I G 2007 IEDM Tech. Dig. P 621
[12] Zhao H, Chen Y T, Yum J H, Wang Y Z, Goel N and Lee J C 2009 Appl. Phys. Lett. 94 193502
[13] Xue F, Jiang A, Zhao H, Chen Y T, Wang Y Z, Zhou F and Lee J 2012 IEEE Electron Device Lett. 33 1255
[14] Lin H C, Yang T, Sharfi H, Kim S K, Xuan Y, Shen T, Mohammadi S and Ye P D 2007 Appl. Phys. Lett. 91 212101
[15] Kazzi M E, Czornomaz L, Rossel C, Rossel C, Gerl C, Caimi D, Siegwart H, Fompeyrine J and Marchiori C 2012 Appl. Phys. Lett. 100 063505
[16] Taking S, MacFlane D and Wasige E 2011 IEEE Trans. Electron Devices 58 1418
[17] Menozzi R, Piazzi A and Contini F 1996 IEEE Trans. Circuits Syst. I 43 839
[18] Matsuzaki H, Maruyama T, Koasugi T, Takahashi H, Tokumitsu M and Enoki T 2007 IEEE Trans. Electron Devices 54 378
Related articles from Frontiers Journals
[1] Hao Liu , Wen-Jun Liu, Yi-Fan Xiao , Chao-Chao Liu , Xiao-Han Wu , and Shi-Jin Ding . Band Alignment at the Al$_{2}$O$_{3}/\beta$-Ga$_{2}$O$_{3}$ Interface with CHF$_{3}$ Treatment[J]. Chin. Phys. Lett., 2020, 37(7): 037303
[2] Wen-Lun Zhang. Improvement of Performance of HfS$_{2}$ Transistors Using a Self-Assembled Monolayer as Gate Dielectric[J]. Chin. Phys. Lett., 2019, 36(6): 037303
[3] Yuan Liu, Li Wang, Shu-Ting Cai, Ya-Yi Chen, Rongsheng Chen, Xiao-Ming Xiong, Kui-Wei Geng. Temperature Dependence of Electrical Characteristics in Indium-Zinc-Oxide Thin Film Transistors from 10K to 400K[J]. Chin. Phys. Lett., 2018, 35(9): 037303
[4] Bin-Xu, Jing-Ping Xu, Lu Liu, Yong Su. Improvements of Interfacial and Electrical Properties for Ge MOS Capacitor with LaTaON Gate Dielectric by Optimizing Ta Content[J]. Chin. Phys. Lett., 2018, 35(7): 037303
[5] Zhao-Zhao Hou, Gui-Lei Wang, Jia-Xin Yao, Qing-Zhu Zhang, Hua-Xiang Yin. Improvement of Operation Characteristics for MONOS Charge Trapping Flash Memory with SiGe Buried Channel[J]. Chin. Phys. Lett., 2018, 35(5): 037303
[6] Qi-Wen Zheng, Jiang-Wei Cui, Ying Wei, Xue-Feng Yu, Wu Lu, Diyuan Ren, Qi Guo. Bias Dependence of Radiation-Induced Narrow-Width Channel Effects in 65nm NMOSFETs[J]. Chin. Phys. Lett., 2018, 35(4): 037303
[7] Ya-Yi Chen, Yuan Liu, Zhao-Hui Wu, Li Wang, Bin Li, Yun-Fei En, Yi-Qiang Chen. Low-Frequency Noise in Amorphous Indium Zinc Oxide Thin Film Transistors with Aluminum Oxide Gate Insulator[J]. Chin. Phys. Lett., 2018, 35(4): 037303
[8] Can Li, Cong-Wei Liao, Tian-Bao Yu, Jian-Yuan Ke, Sheng-Xiang Huang, Lian-Wen Deng. Concise Modeling of Amorphous Dual-Gate In-Ga-Zn-O Thin-Film Transistors for Integrated Circuit Designs[J]. Chin. Phys. Lett., 2018, 35(2): 037303
[9] Zhao-Zhao Hou, Gui-Lei Wang, Jin-Juan Xiang, Jia-Xin Yao, Zhen-Hua Wu, Qing-Zhu Zhang, Hua-Xiang Yin. Improved Operation Characteristics for Nonvolatile Charge-Trapping Memory Capacitors with High-$\kappa$ Dielectrics and SiGe Epitaxial Substrates[J]. Chin. Phys. Lett., 2017, 34(9): 037303
[10] Sheng-Kai Wang, Lei Ma, Hu-Dong Chang, Bing Sun, Yu-Yu Su, Le Zhong, Hai-Ou Li, Zhi Jin, Xin-Yu Liu, Hong-Gang Liu. Positive Bias Temperature Instability Degradation of Buried InGaAs Channel nMOSFETs with InGaP Barrier Layer and Al$_{2}$O$_{3}$ Dielectric[J]. Chin. Phys. Lett., 2017, 34(5): 037303
[11] Han-Han Lu, Jing-Ping Xu, Lu Liu. Interfacial and Electrical Properties of GaAs Metal-Oxide-Semiconductor Capacitor with ZrAlON as the Interfacial Passivation Layer[J]. Chin. Phys. Lett., 2017, 34(4): 037303
[12] Yuan Liu, Kai Liu, Rong-Sheng Chen, Yu-Rong Liu, Yun-Fei En, Bin Li, Wen-Xiao Fang. Total Ionizing Dose Radiation Effects in the P-Type Polycrystalline Silicon Thin Film Transistors[J]. Chin. Phys. Lett., 2017, 34(1): 037303
[13] Yi-Tao He, Ming Qiao, Lu Li, Gang Dai, Bo Zhang, Zhao-Ji Li. A Lateral Regulator Diode with Field Plates for Light-Emitting-Diode Lighting[J]. Chin. Phys. Lett., 2016, 33(09): 037303
[14] Qi-Wen Zheng, Jiang-Wei Cui, Hang Zhou, De-Zhao Yu, Xue-Feng Yu, Qi Guo. Hot-Carrier Effects on Total Dose Irradiated 65nm n-Type Metal-Oxide-Semiconductor Field-Effect Transistors[J]. Chin. Phys. Lett., 2016, 33(07): 037303
[15] Lan-Feng Tang, Hai Lu, Fang-Fang Ren, Dong Zhou, Rong Zhang, You-Dou Zheng, Xiao-Ming Huang,. Electrical Instability of Amorphous-Indium-Gallium-Zinc-Oxide Thin-Film Transistors under Ultraviolet Illumination[J]. Chin. Phys. Lett., 2016, 33(03): 037303
Viewed
Full text


Abstract