Chin. Phys. Lett.  2013, Vol. 30 Issue (3): 037301    DOI: 10.1088/0256-307X/30/3/037301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
AlGaN/GaN Based Diodes for Liquid Sensing
LUO Wei-Jun**, CHEN Xiao-Juan, YUAN Ting-Ting, PANG Lei, LIU Xin-Yu
Key Laboratory of Microelectronics Devices & Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029
Cite this article:   
LUO Wei-Jun, CHEN Xiao-Juan, YUAN Ting-Ting et al  2013 Chin. Phys. Lett. 30 037301
Download: PDF(694KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The characteristics of AlGaN/GaN Schottky diodes as polar liquid sensors are reported. Circular structures, with a gate metal diameter of 200 μm , are designed and fabricated by using a optical lithography process. Ni/Au and Ti/Al/Ni/Au metals are used as the Schottky contact and the ohmic contact, respectively. The Schottky diodes exhibit large changes in reverse leakage current at a bias of ?20 V in response to the surface exposed to various polar liquids, such as acetone and ethanol. The effective Schottky barrier height of the diodes is also changed with the polar liquids. The polar nature of the liquids leads to a change of surface charges, producing a change in surface potential at the semiconductor/liquid interface. The effect of the SiNx passivation layer thickness on the liquid sensing is also discussed. The results demonstrate that the AlGaN/GaN heterostructures are promising for polar liquids, combustion gas, biological, and strain sensing applications.
Received: 06 November 2012      Published: 29 March 2013
PACS:  73.20.At (Surface states, band structure, electron density of states)  
  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/3/037301       OR      https://cpl.iphy.ac.cn/Y2013/V30/I3/037301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LUO Wei-Jun
CHEN Xiao-Juan
YUAN Ting-Ting
PANG Lei
LIU Xin-Yu
[1] Chen M Q, William S, Ioulia S et al 2010 IEEE Microwave Wireless Compon. Lett. 20 563
[2] Idu K, Junghwan M, Seunghoon J and Bumman K 2010 IEEE Trans. Microwave Theory Tech. 58 2562
[3] Luo W J, Chen X J, Zhang H et al 2010 Solid-State Electron. 54 457
[4] Mehandru R, Luo B, Kang B S et al 2004 Solid-State Electron. 48 351
[5] Kang B S, Wang H T, Ren F et al 2008 J. Electron. Mater. 37 550
[6] Cimalla I, Will F, Tonisch K et al 2007 Sens. Actuators B 123 740
[7] Wang X H, Wang X L, Feng C et al 2008 Microelectron. J. 39 20
[8] Hideki H, Masamichi 2008 Appl. Surf. Sci. 254 3653
[9] Takuya K, Taketomo S, Hideki H and Tamotsu H 2006 J. Vac. Sci. Technol. B 24 1972
[10] Liu Y and Ruden P P 2006 Appl. Phys. Lett. 88 013505
[11] Pearton S J, Ren F, Wang Y L et al 2010 Prog. Mater. Sci. 55 1
[12] Luo W J, Wang X L, Xiao H L et al 2008 Microelectron. J. 39 1108
[13] Rami C, Stephane B, David C et al 1998 Opt. Mater. 9 394
[14] Sze S M 1981 Physics of Semiconductor Devices 2nd edn (New York: Wiley) chap 2
[15] Ayelet V and David C 2002 Trends. Biotechnol. 20 22
[16] Mohsen-Nia M, Amiri H and Jazi B 2010 J. Solution Chem. 39 701
Related articles from Frontiers Journals
[1] Yuan Wang, Yixuan Liu, Zhanyang Hao, Wenjing Cheng, Junze Deng, Yuxin Wang, Yuhao Gu, Xiao-Ming Ma, Hongtao Rong, Fayuan Zhang, Shu Guo, Chengcheng Zhang, Zhicheng Jiang, Yichen Yang, Wanling Liu, Qi Jiang, Zhengtai Liu, Mao Ye, Dawei Shen, Yi Liu, Shengtao Cui, Le Wang, Cai Liu, Junhao Lin, Ying Liu, Yongqing Cai, Jinlong Zhu, Chaoyu Chen, and Jia-Wei Mei. Flat Band and $\mathbb{Z}_2$ Topology of Kagome Metal CsTi$_{3}$Bi$_{5}$[J]. Chin. Phys. Lett., 2023, 40(3): 037301
[2] Yue Li, Li Zhu, Chunsheng Chen, Ying Zhu, Changjin Wan, and Qing Wan. High-Performance Indium-Gallium-Zinc-Oxide Thin-Film Transistors with Stacked Al$_{2}$O$_{3}$/HfO$_{2}$ Dielectrics[J]. Chin. Phys. Lett., 2022, 39(11): 037301
[3] Juan-Juan Hao, Pei-Han Sun, Ming Zhang, Xian-Xin Wu, Kai Liu, and Fan Yang. First-Principles Study of Hole-Doped Superconductors $R$NiO$_2$ ($R$ = Nd, La, and Pr)[J]. Chin. Phys. Lett., 2022, 39(6): 037301
[4] Xiaoxia Li, Qili Li, Tongzhou Ji, Ruige Yan, Wenlin Fan, Bingfeng Miao, Liang Sun, Gong Chen, Weiyi Zhang, and Haifeng Ding. Lieb Lattices Formed by Real Atoms on Ag(111) and Their Lattice Constant-Dependent Electronic Properties[J]. Chin. Phys. Lett., 2022, 39(5): 037301
[5] Danwen Yuan, Yuefang Hu, Yanmin Yang, and Wei Zhang. Topological Properties in Strained Monolayer Antimony Iodide[J]. Chin. Phys. Lett., 2021, 38(11): 037301
[6] Guohui Zhan, Minji Shi, Zhilong Yang, and Haijun Zhang. A Programmable k$\cdot$p Hamiltonian Method and Application to Magnetic Topological Insulator MnBi$_2$Te$_4$[J]. Chin. Phys. Lett., 2021, 38(7): 037301
[7] Jun Zhang, Junbo Cheng, Shuaihua Ji, and Yeping Jiang. Visualizing the in-Gap States in Domain Boundaries of Ultra-Thin Topological Insulator Films[J]. Chin. Phys. Lett., 2021, 38(7): 037301
[8] Changyuan Zhou , Dezhi Song , Yeping Jiang, and Jun Zhang . Modification of the Hybridization Gap by Twisted Stacking of Quintuple Layers in a Three-Dimensional Topological Insulator Thin Film[J]. Chin. Phys. Lett., 2021, 38(5): 037301
[9] Rubah Kausar, Chao Zheng, and Xin Wan. Level Statistics Crossover of Chiral Surface States in a Three-Dimensional Quantum Hall System[J]. Chin. Phys. Lett., 2021, 38(5): 037301
[10] Lei Sun, Xiaoming Zhang, Han Gao, Jian Liu, Feng Liu, and Mingwen Zhao. Inversion/Mirror Symmetry-Protected Dirac Cones in Distorted Ruby Lattices[J]. Chin. Phys. Lett., 2020, 37(12): 037301
[11] Linwei Zhou, Chen-Guang Wang, Zhixin Hu, Xianghua Kong, Zhong-Yi Lu, Hong Guo, and Wei Ji. Quasi-One-Dimensional Free-Electron-Like States Selected by Intermolecular Hydrogen Bonds at the Glycine/Cu(100) Interface[J]. Chin. Phys. Lett., 2020, 37(11): 037301
[12] Xiao-Ran Wang , Cui-Xian Guo , Qian Du , and Su-Peng Kou. State-Dependent Topological Invariants and Anomalous Bulk-Boundary Correspondence in Non-Hermitian Topological Systems with Generalized Inversion Symmetry[J]. Chin. Phys. Lett., 2020, 37(11): 037301
[13] Yong-Hua Cao, Jin-Tao Bai, and Hong-Jian Feng. Perovskite Termination-Dependent Charge Transport Behaviors of the CsPbI$_{3}$/Black Phosphorus van der Waals Heterostructure[J]. Chin. Phys. Lett., 2020, 37(10): 037301
[14] Pengdong Wang, Yihao Wang, Bo Zhang, Yuliang Li, Sheng Wang, Yunbo Wu, Hongen Zhu, Yi Liu, Guobin Zhang, Dayong Liu, Yimin Xiong, and Zhe Sun. Experimental Observation of Electronic Structures of Kagome Metal YCr$_{6}$Ge$_{6}$[J]. Chin. Phys. Lett., 2020, 37(8): 037301
[15] Zhihai Cui, Yuting Qian, Wei Zhang, Hongming Weng, and Zhong Fang. Type-II Dirac Semimetal State in a Superconductor Tantalum Carbide[J]. Chin. Phys. Lett., 2020, 37(8): 037301
Viewed
Full text


Abstract