Chin. Phys. Lett.  2013, Vol. 30 Issue (3): 036501    DOI: 10.1088/0256-307X/30/3/036501
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
The Physical-Mechanism Based High-Temperature Thermal Contact Conductance Model with Experimental Verification
LIU Dong-Huan**, SHANG Xin-Chun
School of Mathematics and Physics, University of Science & Technology Beijing, Beijing 100083
Cite this article:   
LIU Dong-Huan, SHANG Xin-Chun 2013 Chin. Phys. Lett. 30 036501
Download: PDF(904KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The physical-mechanism based high-temperature thermal contact conductance model is proposed, in which the temperature effect on the material properties and interface radiation effect are considered. A testing platform of high temperature thermal contact conductance is also established, and the thermal contact conductance between three-dimensional braid C/C composite material and superalloy GH600 is tested under different interface roughness and temperatures. Experimental results verify the rationality of the present model. Results also show that it is necessary to take the effect of temperature into account especially at high temperatures, and the interface radiation effect is negligible compared to spot conduction under 850 K.
Received: 12 October 2012      Published: 29 March 2013
PACS:  65.40.De (Thermal expansion; thermomechanical effects)  
  81.05.Bx (Metals, semimetals, and alloys)  
  73.40.Jn (Metal-to-metal contacts)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/3/036501       OR      https://cpl.iphy.ac.cn/Y2013/V30/I3/036501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Dong-Huan
SHANG Xin-Chun
[1] Fletcher L S 1988 J. Heat Transfer 110 1059
[2] Grujicic M, Zhao C L and Dusel E C 2005 Appl. Surf. Sci. 246 290
[3] Lambert M A and Fletcher L S 1997 J. Heat Transfer 119 684
[4] Bahrami M et al 2006 Appl. Mech. Rev. 59 1
[5] Fieberg C and Kneer R 2008 Int. J. Heat Mass Transfer 51 1017
[6] Temizer I and Wriggers 2010 Int. J. Numer. Meth. Eng. 83 27
[7] Singhal V et al 2005 Int. J. Heat Mass Transfer 48 5446
[8] Shojaefard M H and Goudarzi K 2008 Am. J. Appl. Sci. 5 1566
[9] Liang Z and Tsai H L 2011 Phys. Rev. E 83 061603
[10] Lyeo H K and Cahill D G 2006 Phys. Rev. B 73 144301
[11] Wang C et al 2012 J. Comput. Phys. 231 653
[12] Tan S et al 2012 J. Comput. Phys. 231 2510
[13] Mikic B B 1974 Int. J. Heat Mass Transfer 17 205
[14] Song S and Yovanovich M M 1987 AIAA 25th Aerospace Sciences Meeting (Reno, USA 12–15 January 1987) p 1
[15] Madhusudana C V and Fletcher L S 1986 AIAA J. 24 510
[16] Liu D H, Zheng X P and LiuY H 2009 CMES-Comp. Model. Eng. Sci. 39 263
Related articles from Frontiers Journals
[1] Meibo Tang, Xiuhong Pan , Minghui Zhang , and Haiqin Wen . Scaling Behavior between Heat Capacity and Thermal Expansion in Solids[J]. Chin. Phys. Lett., 2021, 38(2): 036501
[2] Meng Li, Yuan Li, Chun-Yan Wang, Qiang Sun. Negative Thermal Expansion of GaFe(CN)$_{6}$ and Effect of Na Insertion by First-Principles Calculations[J]. Chin. Phys. Lett., 2019, 36(6): 036501
[3] Qing Wang, Hai-Peng Wang, De-Lu Geng, Ming-Xing Li, Bing-Bo Wei. A Calorimetric Study Assisted with First Principle Calculations of Specific Heat for Si-Ge Alloys within a Broad Temperature Range[J]. Chin. Phys. Lett., 2018, 35(12): 036501
[4] Yun-Kai Zhou, Xing Zhang, Shu-Guang Liu, Ming-Zhen Ma, Ri-Ping Liu. High Performance ZrNbAl Alloy with Low Thermal Expansion Coefficient[J]. Chin. Phys. Lett., 2018, 35(8): 036501
[5] Wei-Li Wang, Li-Jun Meng, Liu-Hui Li, Liang Hu, Kai Zhou, Zhang-Huan Kong, Bing-Bo Wei. An Experimental Study of Thermophysical Properties for Quinary High-Entropy NiFeCoCrCu/Al Alloys[J]. Chin. Phys. Lett., 2016, 33(11): 036501
[6] Zheng-Fu Cheng, Rui-Lun Zheng. Thermal Expansion and Deformation of Graphene[J]. Chin. Phys. Lett., 2016, 33(04): 036501
[7] Hai-Peng Wang, Peng Lü, Kai Zhou, Bing-Bo Wei. Thermal Expansion of Ni$_{3}$Al Intermetallic Compound: Experiment and Simulation[J]. Chin. Phys. Lett., 2016, 33(04): 036501
[8] Xiang-Hong Ge, Yan-Chao Mao, Lin Li, Li-Ping Li, Na Yuan, Yong-Guang Cheng, Juan Guo, Ming-Ju Chao, Er-Jun Liang. Phase Transition and Negative Thermal Expansion Property of ZrMnMo$_{3}$O$_{12}$[J]. Chin. Phys. Lett., 2016, 33(04): 036501
[9] ZHENG Fa-Song, DING Ying-Chun, TAN Yi-Dong, LIN Jing, ZHANG Shu-Lian. The Approach of Compensation of Air Refractive Index in Thermal Expansion Coefficients Measurement Based on Laser Feedback Interferometry[J]. Chin. Phys. Lett., 2015, 32(07): 036501
[10] CHU Li-Hua, WANG Cong, SUN Ying, LI Mei-Cheng, WAN Zi-Pei, WANG Yu, DOU Shang-Yi, CHU Yue. Doping Effect of Co at Ag Sites in Antiperovskite Mn3AgN Compounds[J]. Chin. Phys. Lett., 2015, 32(4): 036501
[11] YUAN Bao-He, YUAN Huan-Li, SONG Wen-Bo, LIU Xian-Sheng, CHENG Yong-Guang, CHAO Ming-Ju, LIANG Er-Jun. High Solubility of Hetero-Valence Ion (Cu2+) for Reducing Phase Transition and Thermal Expansion of ZrV1.6P0.4O7[J]. Chin. Phys. Lett., 2014, 31(07): 036501
[12] ZHANG Xu-Dong, CUI Shou-Xin, SHI Hai-Feng. Theoretical Study of Thermodynamics Properties and Bulk Modulus of SiC under High Pressure and Temperature[J]. Chin. Phys. Lett., 2014, 31(1): 036501
[13] SONG Wen-Bo, LIANG Er-Jun, LIU Xian-Sheng, LI Zhi-Yuan, YUAN Bao-He, WANG Jun-Qiao. A Negative Thermal Expansion Material of ZrMgMo3O12[J]. Chin. Phys. Lett., 2013, 30(12): 036501
[14] SONG Hua-Jie, HUANG Feng-Lei** . Accurately Predicting the Density and Hydrostatic Compression of Hexahydro-1,3,5-Trinitro-1,3,5-Triazine from First Principles[J]. Chin. Phys. Lett., 2011, 28(9): 036501
[15] LIU Xi**, LIU Wei, HE Qiang, DENG Li-Wei, WANG He-Jin, HE Duan-Wei, LI Bao-Sheng . Isotropic Thermal Expansivity and Anisotropic Compressibility of ReB2[J]. Chin. Phys. Lett., 2011, 28(3): 036501
Viewed
Full text


Abstract